scholarly journals On the Validity of the Cosmic No-hair Conjecture in some Conformal-violating Maxwell Models

Author(s):  
Do Quoc Tuan

Abstract: We will present main results of our recent investigations on the validity of the cosmic no-hair conjecture proposed by Hawking and his colleagues in some conformal-violating Maxwell models, in which a scalar field or its kinetic term is non-trivially coupled to the electromagnetic field. In particular, we will show that the studied models really admit the Bianchi type I metrics, which are homogeneous but anisotropic space time, as their stable cosmological solutions. Hence, these models turn out to be counterexamples to the cosmic no-hair conjecture. Keywords: Cosmic no-hair conjecture, cosmic inflation, Bianchi type I space time, Maxwell theory.

2010 ◽  
Vol 326 (2) ◽  
pp. 315-322 ◽  
Author(s):  
Özgür Akarsu ◽  
Can Battal Kılınç

Author(s):  
Kangujam Priyokumar Singh ◽  
Jiten Baro ◽  
Asem Jotin Meitei

Here we studied Bianchi type-I cosmological models with massive strings in general relativity in five dimensional space time. Out of the two different cases obtained here, one case leads to a five dimensional Bianchi type-I string cosmological model in general relativity while the other yields the vacuum Universe in general relativity in five dimensional space time. The physical and geometrical properties of the model Universe are studied and compared with the present day’s observational findings. It is observed that our model is anisotropic, expanding, shearing, and decelerates at an early stage and then accelerates at a later time. The model expands along x, y, and z axes and the extra dimension contracts and becomes unobservable at t → ∞. We also observed that the sum of the energy density (ρ) and the string tension density (λ) vanishes (ρ + λ = 0).


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 403
Author(s):  
Yihu Feng ◽  
Lei Hou

In this current study, we explore the modified homogeneous cosmological model in the background of LRS Bianchi type-I space–time. For this purpose, we employ the Homotopy Perturbation Method (HPM). HPM is an analytical-based method. Further, we calculated the main field equations of the cosmological model LRS Bianchi type-I space–time. Furthermore, we discuss the necessary calculations of HPM. Therefore, we investigate the analytical solution of our problem by adopting HPM. In this response, we discuss five different values of parameter n. We also give a brief discussion about solutions. The main purpose of this study is to apply the application of HPM in the cosmological field.


2003 ◽  
Vol 288 (4) ◽  
pp. 523-529 ◽  
Author(s):  
G. Mohanty ◽  
S.K. Sahu ◽  
P.K. Sahoo

Sign in / Sign up

Export Citation Format

Share Document