scholarly journals On the Convergence of Bounded Solutions of Non Homogeneous Gradient-like Systems

2017 ◽  
Vol 1 (1) ◽  
pp. 61
Author(s):  
Phuong Minh Tran ◽  
Nhan Thanh Nguyen

We study the long time behavior of the bounded solutions of non homogeneous gradient-like system which admits a strict Lyapunov function. More precisely, we show that any bounded solution of the gradient-like system converges to an accumulation point as time goes to infinity under some mild hypotheses. As in homogeneous case, the key assumptions for this system are also the angle condition and the Kurdyka-Lojasiewicz inequality. The convergence result will be proved under a L1 -condition of the perturbation term. Moreover, if the Lyapunov function satisfies a Lojasiewicz inequality then the rate of convergence will be even obtained.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2019 ◽  
Vol 3 (1) ◽  
pp. 312
Author(s):  
Minh-Phuong Tran ◽  
Thanh-Nhan Nguyen

In this paper, we prove the long time behavior of bounded solutions to a first order gradient-like system with low damping and perturbation terms. Our convergence results are obtained under some hypotheses of KurdykaLojasiewicz inequality and the angle and comparability condition.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


2021 ◽  
Vol 8 (1) ◽  
pp. 27-45
Author(s):  
M. M. Freitas ◽  
M. J. Dos Santos ◽  
A. J. A. Ramos ◽  
M. S. Vinhote ◽  
M. L. Santos

Abstract In this paper, we study the long-time behavior of a nonlinear coupled system of wave equations with damping terms and subjected to small perturbations of autonomous external forces. Using the recent approach by Chueshov and Lasiecka in [21], we prove that this dynamical system is quasi-stable by establishing a quasistability estimate, as consequence, the existence of global and exponential attractors is proved. Finally, we investigate the upper and lower semicontinuity of global attractors under autonomous perturbations.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiaopeng Zhao

AbstractIn this paper, we study the long time behavior of solution for the initial-boundary value problem of convective Cahn–Hilliard equation in a 2D case. We show that the equation has a global attractor in $H^{4}(\Omega )$ H 4 ( Ω ) when the initial value belongs to $H^{1}(\Omega )$ H 1 ( Ω ) .


2021 ◽  
pp. 1-27
Author(s):  
Ahmad Makki ◽  
Alain Miranville ◽  
Madalina Petcu

In this article, we are interested in the study of the well-posedness as well as of the long time behavior, in terms of finite-dimensional attractors, of a coupled Allen–Cahn/Cahn–Hilliard system associated with dynamic boundary conditions. In particular, we prove the existence of the global attractor with finite fractal dimension.


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Yongqin Xie ◽  
Zhufang He ◽  
Chen Xi ◽  
Zheng Jun

We prove the asymptotic regularity of global solutions for a class of semilinear evolution equations in H01(Ω)×H01(Ω). Moreover, we study the long-time behavior of the solutions. It is proved that, under the natural assumptions, these equations possess the compact attractor 𝒜 which is bounded in H2(Ω)×H2(Ω), where the nonlinear term f satisfies a critical exponential growth condition.


Sign in / Sign up

Export Citation Format

Share Document