scholarly journals Petrophysical Properties of the Upper Qamchuqa Carbonate Reservoir through Well Log Evaluation in the Khabbaz Oilfield

2017 ◽  
Vol 1 (1) ◽  
pp. 72-88 ◽  
Author(s):  
Ala A. Ghafur ◽  
Dana A. Hasan

Khabbaz oilfield has a symmetrical subsurface anticline with a length of 20 km and a width of 4 km. Despite the fact that Khabbaz oilfield has a small size structure, it is known as one of the massive Oilfields in Iraq. The reservoirs of Khabbaz oilfield are produced by both Cretaceous and Tertiary rocks. The Upper Qamchuqa reservoir is the most productive reservoir of the Khabbaz oilfield with thickness ranges between 138 to 170 m. This formation is subdivided into two units, from the top is Unit A with a thickness of 67 m and from the bottom is Unit B with a thickness of 84.5 m. From a full set of log data of three wells (Kz-1, Kz-13 and Kz-14), the petrophysical properties of Khabbaz oilfield has been evaluated. The wireline log data includes gamma-ray log, sonic log, neutron log, density log and resistivity logs, both Rxo and Rt logs. This study revealed that Unit A represents the best reservoir characteristics where Unit A is subdivided into six reservoir subunits named (1-A, 2-A, 3-A, 4-A, 5-A and 6-A). They are separated by five non-reservoir subunits named 1-N, 2-N, 3-N, 4-N and 5-N. In addition to a less porous reservoir unit that is called Unit B, which has been divided into four reservoir subunits named 1-B, 2-B, 3-B and 4-B. These are separated by five non-reservoir units named 1-N, 2-N, 3-N, 4-N and 5-N. It has been recognized that both reservoir units A and B are clean formations and have minimum shale volume with high porosity in limestone and dolomite to dolomitic limestone lithology with high oil saturation and low water saturation. Based on the above reservoir characteristics it can be concluded that the reservoir units of the Khabbaz oilfield contain a massive commercial hydrocarbon accumulation.

2021 ◽  
Vol 54 (1E) ◽  
pp. 67-77
Author(s):  
Buraq Adnan Al-Baldawi

The petrophysical analysis is very important to understand the factors controlling the reservoir quality and production wells. In the current study, the petrophysical evaluation was accomplished to hydrocarbon assessment based on well log data of four wells of Early Cretaceous carbonate reservoir Yamama Formation in Abu-Amood oil field in the southern part of Iraq. The available well logs such as sonic, density, neutron, gamma ray, SP, and resistivity logs for wells AAm-1, AAm-2, AAm-3, and AAm-5 were used to delineate the reservoir characteristics of the Yamama Formation. Lithologic and mineralogic studies were performed using porosity logs combination cross plots such as density vs. neutron cross plot and M-N mineralogy plot. These cross plots show that the Yamama Formation consists mainly of limestone and the essential mineral components are dominantly calcite with small amounts of dolomite. The petrophysical characteristics such as porosity, water and hydrocarbon saturation and bulk water volume were determined and interpreted using Techlog software to carried out and building the full computer processed interpretation for reservoir properties. Based on the petrophysical properties of studied wells, the Yamama Formation is divided into six units; (YB-1, YB-2, YB-3, YC-1, YC-2 and YC-3) separated by dense non porous units (Barrier beds). The units (YB-1, YB-2, YC-2 and YC-3) represent the most important reservoir units and oil-bearing zones because these reservoir units are characterized by good petrophysical properties due to high porosity and low to moderate water saturation. The other units are not reservoirs and not oil-bearing units due to low porosity and high-water saturation.


2020 ◽  
Vol 21 (3) ◽  
pp. 9-18
Author(s):  
Ahmed Abdulwahhab Suhail ◽  
Mohammed H. Hafiz ◽  
Fadhil S. Kadhim

   Petrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly composed of sandstone interlaminated with shale according to the interpretation of density, sonic, and gamma-ray logs. Interpretation of formation lithology and petrophysical parameters shows that Nu-1 is characterized by low shale content with high porosity and low water saturation whereas Nu-2 and Nu-4 consist mainly of high laminated shale with low porosity and permeability. Nu-3 is high porosity and water saturation and Nu-5 consists mainly of limestone layer that represents the water zone.


2020 ◽  
pp. 2979-2990
Author(s):  
Buraq Adnan Al-Baldawi

The present study includes the evaluation of petrophysical properties and lithological examination in two wells of Asmari Formation in Abu Ghirab oil field (AG-32 and AG-36), Missan governorate, southeastern Iraq. The petrophysical assessment was performed utilizing well logs information to characterize Asmari Formation. The well logs available, such as sonic, density, neutron, gamma ray, SP, and resistivity logs, were converted into computerized data using Neuralog programming. Using Interactive petrophysics software, the environmental corrections and reservoir parameters such as porosity, water saturation, hydrocarbon saturation, volume of bulk water, etc. were analyzed and interpreted. Lithological, mineralogical, and matrix recognition studies were performed using porosity combination cross plots. Petrophysical characteristics were determined and plotted as computer processing interpretation (CPI) using Interactive Petrophysics program. Based on petrophysical properties, Asmari Reservoir in Abu Ghirab oil field is classified into three sub formations: Jeribe/ Euphrates and Kirkuk group which is divided into two zones: upper Kirkuk zone, and Middle-Lower Kirkuk zone. Interpretation of well logs of Asmari Formation indicated a commercial Asmari Formation production with medium oil evidence in some ranges of the formation, especially in the upper Kirkuk zone at well X-1. However, well X-2, especially in the lower part of Jeribe/ Euphrates and Middle-Lower Kirkuk zone indicated low to medium oil evidence. Lithology of Asmari Formation demonstrated a range from massive dolomite in Jeribe/ Euphrates zone to limestone in upper Kirkuk zone and limestone and sandstone in middle-lower Kirkuk zone, whereas mineralogy of the reservoir showed calcite and dolomite with few amounts of anhydrite.


2021 ◽  
Vol 54 (2C) ◽  
pp. 39-47
Author(s):  
Hussein Y. Ali

Evaluating a reservoir to looking for hydrocarbon bearing zones, by determining the petrophysical properties in two wells of the Yamama Formation in Siba field using Schlumberger Techlog software. Three porosity logs were used to identify lithology using MN and MID cross plots. Shale volume were calculated using gamma ray log in well Sb-6ST1 and corrected gamma ray in well Sb-5B. Sonic log was used to calculate porosity in bad hole intervals while from density log at in-gauge intervals. Moreover, water saturation was computed from the modified Simandoux equation and compared to the Archie equation. Finally, Permeability was estimated using a flow zone indicator. The results show that the Yamama Formation is found to be mainly limestone that confirmed by cuttings description and this lithology intermixed with some dolomite, in addition to gas and secondary porosity effects. Generally, the formation is considered clean due to the low shale volume in both wells with the elimination of the uranium effect in well Sb-5B. The calculated porosity was validated by core porosity in YC and YD units. Modified Simandoux gives a better estimation than the Archie equation since it takes into account the conductive of matrix in addition to the fluid conductivity. Five equations were obtained from porosity permeability relationship of core data based on five hydraulic flow units reorganized from the cross plot of reservoir quality index against normalized porosity index. The overall interpretation showed that YC and YD units are the best quality hydrocarbon units in the Yamama Formation, while YA came in the second importance and has properties better than YB. Moreover, YE and YFG are poor units due to high water saturation.


KURVATEK ◽  
2017 ◽  
Vol 1 (2) ◽  
pp. 21-31
Author(s):  
Fatimah Miharno

ABSTRACT*Zefara* Field formation Baturaja on South Sumatra Basin is a reservoir carbonate and prospective gas. Data used in this research were 3D seismik data, well logs, and geological information. According to geological report known that hidrocarbon traps in research area were limestone lithological layer as stratigraphical trap and faulted anticline as structural trap. The study restricted in effort to make a hydrocarbon accumulation and a potential carbonate reservoir area maps with seismic attribute. All of the data used in this study are 3D seismic data set, well-log data and check-shot data. The result of the analysis are compared to the result derived from log data calculation as a control analysis. Hydrocarbon prospect area generated from seismic attribute and are divided into three compartments. The seismic attribute analysis using RMS amplitude method and instantaneous frequency is very effective to determine hydrocarbon accumulation in *Zefara* field, because low amplitude from Baturaja reservoir. Low amplitude hints low AI, determined high porosity and high hydrocarbon contact (HC).  Keyword: Baturaja Formation, RMS amplitude seismic attribute, instantaneous frequency seismic attribute


2021 ◽  
pp. 4810-4818
Author(s):  
Marwah H. Khudhair

     Shuaiba Formation is a carbonate succession deposited within Aptian Sequences. This research deals with the petrophysical and reservoir characterizations characteristics of the interval of interest in five wells of the Nasiriyah oil field. The petrophysical properties were determined by using different types of well logs, such as electric logs (LLS, LLD, MFSL), porosity logs (neutron, density, sonic), as well as gamma ray log. The studied sequence was mostly affected by dolomitization, which changed the lithology of the formation to dolostone and enhanced the secondary porosity that replaced the primary porosity. Depending on gamma ray log response and the shale volume, the formation is classified into three zones. These zones are A, B, and C, each can be split into three rock intervals in respect to the bulk porosity measurements. The resulted porosity intervals are: (I) High to medium effective porosity, (II) High to medium inactive porosity, and (III) Low or non-porosity intervals. In relevance to porosity, resistivity, and water saturation points of view, there are two main reservoir horizon intervals within Shuaiba Formation. Both horizons appear in the middle part of the formation, being located within the wells Ns-1, 2, and 3. These intervals are attributed to high to medium effective porosity, low shale content, and high values of the deep resistivity logs. The second horizon appears clearly in Ns-2 well only.


2017 ◽  
Vol 5 (1) ◽  
pp. 37 ◽  
Author(s):  
Inyang Namdie ◽  
Idara Akpabio ◽  
Agbasi Okechukwu .E.

Bonga oil field is located 120km (75mi) southeast of the Niger Delta, Nigeria. It is a subsea type development located about 3500ft water depth and has produced over 330 mmstb of hydrocarbon till date with over 16 oil producing and water injection wells. The producing formation is the Middle to Late Miocene unconsolidated turbidite sandstones with lateral and vertical homogeneities in reservoir properties. This work, analysis the petrophysical properties of the reservoir units for the purpose of modeling the effect of shale content on permeability in the reservoir. Turbidite sandstones are identified by gamma-ray log signatures as intervals with 26-50 API, while sonic, neutron, resistivity, caliper and other log data are applied to estimate volume of shale ranging between 0.972 v/v for shale intervals and 0.0549 v/v for turbidite sands, water saturation of 0.34 v/v average in most sand intervals, porosity range from 0.010 for shale intervals to 0.49 v/v for clean sands and permeability values for the send interval 11.46 to2634mD, for intervals between 7100 to 9100 ft., Data were analyzed using the Interactive Petrophysical software that splits the whole curve into sand and shale zones and estimates among other petrophysical parameters the shale contents of the prospective zones. While Seismic data revealed reservoir thickness ranging from 25ft to over 140ft well log data within the five wells have identified sands of similar thickness and estimated average permeability of700mD. Within the sand units across the five wells, cross plots of estimated porosity, volume of shale and permeability values reveal strong dependence of permeability on shale volume and a general decrease in permeability in intervals with shale volume. It is concluded that sand units with high shale contents that are from0.500 to0.900v/v will not provide good quality reservoir in the field.


2019 ◽  
Vol 10 (2) ◽  
pp. 351-362 ◽  
Author(s):  
Mohamed A. Kassab ◽  
Ali El-Said Abbas ◽  
Mostafa A. Teama ◽  
Musa A. S. Khalifa

Abstract Petrophysical assessment of Facha Formation based on log data of six wells A1, A3, A4, A5, A8 and A13 recorded over the entire reservoir interval was established. Hakim Oil Field produces from the Lower Eocene Facha reservoir, which is located at the western side of Sirte basin. Limestone, dolostone and dolomitic limestone are the main lithologies of the Facha reservoir. This lithology is defined by neutron porosity—density cross-plot. Noteworthily, limestone increases in the lowermost intervals of the reservoir. Structurally, the field is traversed by three northwest–southeast faults. The shale of the Upper Cretaceous Sirte Formation is thought to be the source rock of the Facha Formation, whereas the seals are the limestone and anhydrite of the Lower Eocene Gir Formation. In this study, the Facha reservoir’s cutoff values were obtained from the cross-plots of the calculated shale volume, porosity and water saturation values accompanied with gamma ray log data and were set as 20%, 10% and 70%, respectively. Isoparametric maps for the thickness variation of net pay, average porosity, shale volume and water saturation were prepared, and the authors found out that the Facha Formation has promising reservoir characteristics in the area of study; a prospective region for oil accumulation trends is in the north and south of the study area.


2006 ◽  
Vol 9 (06) ◽  
pp. 681-687 ◽  
Author(s):  
Shawket G. Ghedan ◽  
Bertrand M. Thiebot ◽  
Douglas A. Boyd

Summary Accurately modeling water-saturation variation in transition zones is important to reservoir simulation for predicting recoverable oil and guiding field-development plans. The large transition zone of a heterogeneous Middle East reservoir was challenging to model. Core-calibrated, log-derived water saturations were used to generate saturation-height-function groups for nine reservoir-rock types. To match the large span of log water saturation (Sw) in the transition zone from the free-water level (FWL) to minimum Sw high in the oil column, three saturation-height functions per rock type (RT) were developed, one each for the low-, medium-, and high-porosity range. Though developed on a different scale from the simulation-model cells, the saturation profiles generated are a good statistical match to the wireline-log-interpreted Sw, and bulk volume of water (BVW) and fluid volumetrics agree with the geological model. RT-guided saturation-height functions proved a good method for modeling water saturation in the simulation model. The technique emphasizes the importance of oil/brine capillary pressures measured under reservoir conditions and of collecting an adequate number of Archie saturation and cementation exponents to reduce uncertainties in well-log interpretation. Introduction The heterogeneous carbonate reservoir in this study is composed of both limestone and dolomite layers frequently separated by non-reservoir anhydrite layers (Ghedan et al. 2002). Because of its heterogeneity, this reservoir, like other carbonate reservoirs, contains long saturation-transition zones of significant sizes. Transition zones are conventionally defined as that part of the reservoir between the FWL and the level at which water saturation reaches a minimum near-constant (irreducible water saturation, Swirr) high in the reservoir (Masalmeh 2000). For the purpose of this paper, however, we define transition zones as those parts of the reservoir between the FWL and the dry-oil limit (DOL), where both water and oil are mobile irrespective of the saturation level. Both water and oil are mobile in the transition zone, while only oil is mobile above the transition zone. By either definition, the oil/water transition zone contains a sizable part of this field's oil in place. Predicting the amount of recoverable oil in a transition zone through simulation depends on (among other things) the distribution of initial oil saturation as a function of depth as well as the mobility of the oil in these zones (Masalmeh 2000). Therefore, the characterization of transition zones in terms of original water and oil distribution has a potentially large effect on reservoir recoverable reserves and, in turn, reservoir economics.


2017 ◽  
Vol 36 (3) ◽  
pp. 729-733
Author(s):  
MO Ehigiator ◽  
NC Chigbata

A suite of geophysical wire line logs were run in hole. The wells data were acquired from bottom to top and not top to bottom. Basically, we have the qualitative and the quantitative evaluation techniques.Qualitative means is usually used for identification of the type of lithology and also for the component of the formation. Quantitative is used to estimate numerically, the value of what is in the formation. The logs used for evaluation were: Spontaneous potential logs and the Gamma ray logs. These were used to determine the lithology of the formation. Resistivity logs were run in hole to also determine the water saturation in the formation. The Formation Density and the compensated Neutron logs were run in hole to differentiate the gaseous zone from the oil zone in the Hydrocarbon Formation Ogo1, Ogo2 and Ogo3 from well correlation depicts that the subsurface stratigraphy is that of sand – shale intercalations.  Two prominent hydrocarbon bearing reservoirs (R1and R2), at Depth 1563m and 1642mm respectively were identified. The reservoirs were found to have average porosity of 0.22, water saturation 0.43 and Hydrocarbon saturation of 0.57. The reservoirs have permeability of 1376m, volume of oil in place for reservoir 1 and 2 is 39900m3  and 9647 m3   respectively. More. Well correlations are recommended for proper drilling and well completions. 4D seismic acquisitions should be encouraged for proper view of the formation. http://dx.doi.org/10.4314/njt.v36i3.10


Sign in / Sign up

Export Citation Format

Share Document