scholarly journals Texture Feature On Determining Quantity of Soil Organic Matter For Patchouli Plant Using Backpropagation Neural Network

2019 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Candra Dewi ◽  
Suci Sundari ◽  
Mardji Mardji

Patchouli (Pogostemon Cablin Bent) has higher PA (Patchouli Alcohol) and oil production if grown in soil containing 75% organic matter. One way that can be used to detect the content of organic matter is to use soil images. The problem in the use of soil images is the color of the soil that is almost similar, namely the gradation between dark brown to black. Therefore, color features are not enough to be used as input in the recognition process. For this purposes, texture features are added in this study in addition to color features. The color features are extracted using color moment and the texture features are extracted using Gray Level Co-occurrence Matrix (GLCM). These feature was then chosen to get the best combination as input in the identification process using the Backpropagation Neural Network (BPNN). The system identifies the quantity of soil organic matter into five classes, namely very low, low, medium, high, and very high. The highest accuracy result obtained was 73% and MSE value 0.5122 by using five GLCM features (Angular Second Moment, contrast, correlation, Inverse Difference Moment, and entropy). This result was obtained by using the BPNN parameter, namely learning rate values 0.5, maximum iteration values of 1000, number training data 210, and total test data 12.

Author(s):  
Candra Dewi ◽  
Akbar Grahadhuita ◽  
Lailil Muflikhah

<span>Patchouli is one of the essential plants that have the most potential and widely cultivated in Indonesia. Patchouli is greedily absorbing soil nutrients and organic matter. Therefore, the selection of soil with high organic matter will maximize the patchouli’s productivity. This paper aims to facilitate soil’s organic matter identification by classifying soil image based on the combination of color and texture features. The color feature extraction was done using the Color Moments method and the texture feature was done using Gray Level Co-occurrence Matrix (GLCM) method. The selection of features was performed to obtain the best combination of color and texture features. The selected features then was used as input of classification by using Modified K-Nearest Neighbor (MKNN). The samples of soil that used as data were taken from several districts in Blitar, East Java province. The testing result of this research showed the highest accuracy of 93,33% by using 180 training data, and also particular color and texture feature combination.</span>


10.29007/6mt1 ◽  
2018 ◽  
Author(s):  
Riddhi Shaparia ◽  
Narendra Patel ◽  
Zankhana Shah

In this research paper, we have used texture and color features for flower classification. Standard database of flowers have used for experiments. The pre- processing like noise removal and segmentation for elimination of background are apply on input images. Texture and color features are extracted from the segmented images. Texture feature is extracted using GLCM (Gray Level Co-occurrence Matrix) method and color feature is extracted using Color moment. For classification, neural network classifier is used. The overall accuracy of the system is 95.0 %.


2019 ◽  
Vol 11 (10) ◽  
pp. 1202 ◽  
Author(s):  
Min Ji ◽  
Lanfa Liu ◽  
Runlin Du ◽  
Manfred F. Buchroithner

The accurate and quick derivation of the distribution of damaged building must be considered essential for the emergency response. With the success of deep learning, there is an increasing interest to apply it for earthquake-induced building damage mapping, and its performance has not been compared with conventional methods in detecting building damage after the earthquake. In the present study, the performance of grey-level co-occurrence matrix texture and convolutional neural network (CNN) features were comparatively evaluated with the random forest classifier. Pre- and post-event very high-resolution (VHR) remote sensing imagery were considered to identify collapsed buildings after the 2010 Haiti earthquake. Overall accuracy (OA), allocation disagreement (AD), quantity disagreement (QD), Kappa, user accuracy (UA), and producer accuracy (PA) were used as the evaluation metrics. The results showed that the CNN feature with random forest method had the best performance, achieving an OA of 87.6% and a total disagreement of 12.4%. CNNs have the potential to extract deep features for identifying collapsed buildings compared to the texture feature with random forest method by increasing Kappa from 61.7% to 69.5% and reducing the total disagreement from 16.6% to 14.1%. The accuracy for identifying buildings was improved by combining CNN features with random forest compared with the CNN approach. OA increased from 85.9% to 87.6%, and the total disagreement reduced from 14.1% to 12.4%. The results indicate that the learnt CNN features can outperform texture features for identifying collapsed buildings using VHR remotely sensed space imagery.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi142-vi142
Author(s):  
Kaylie Cullison ◽  
Garrett Simpson ◽  
Danilo Maziero ◽  
Kolton Jones ◽  
Radka Stoyanova ◽  
...  

Abstract A dilemma in treating glioblastoma is that MRI after chemotherapy and radiation therapy (chemoRT) shows areas of presumed tumor growth in up to 50% of patients. These areas can represent true progression (TP), tumor growth with tumors non-responsive to treatment, or pseudoprogression (PP), edema and tumor necrosis with favorable treatment response. On imaging, TP and PP are usually not discernable. Patients in this study undergo six weeks of chemoRT on a combination MRI/RT device, receiving daily MRIs. The goal of this study is to explore the correlation of radiomics features with progression. The tumor lesion and surrounding areas of growth/edema were manually outlined as regions of interest (ROIs) for each daily T2-weighted MRI scan. The ROIs were used to calculate texture features: statistical features based on the gray-level co-occurrence matrix (GLCM), the gray-level zone size matrix (GLZSM), the gray-level run length matrix (GLRLM), and the neighborhood gray-tone difference matrix (NGTDM). Each of these matrix classes describe the probability of spatial relationships of gray levels occurring within the ROI. Daily texture features were averaged per week of treatment for each patient. Patient response was retrospectively defined as no progression (NP), TP, or PP. A Kruskal-Wallis test was performed to identify texture features that correlated most strongly with patient response. Forty texture features were calculated for 12 patients (19 treated, 7 excluded due to no T2 lesion or progression status unknown, 6 NP, 3 TP, 3 PP). There was a trend of more texture features correlating significantly with response in weeks 4-6 of treatment, compared to weeks 1-3. A particular texture feature, GLSZM Small Zone Low Gray-Level Emphasis, showed increasing difference between PP and TP over time, with significant difference during week 6 of treatment (p=0.0495). Future directions include correlating early outcomes with greater numbers of patients and daily multiparametric MRI.


2020 ◽  
Vol 12 (3) ◽  
pp. 27-44
Author(s):  
Gulivindala Suresh ◽  
Chanamallu Srinivasa Rao

Copy-move forgery (CMF) is an established process to copy an image segment and pastes it within the same image to hide or duplicate a portion of the image. Several CMF detection techniques are available; however, better detection accuracy with low feature vector is always substantial. For this, differential excitation component (DEC) of Weber Law descriptor in combination with the gray level co-occurrence matrix (GLCM) approach of texture feature extraction for CMFD is proposed. GLCM Texture features are computed in four directions on DEC and this acts as a feature vector for support vector machine classifier. These texture features are more distinguishable and it is validated through other two proposed methods based on discrete wavelet transform-GLCM (DWT-GLCM) and GLCM. Experimentation is carried out on CoMoFoD and CASIA databases to validate the efficacy of proposed methods. Proposed methods exhibit resilience against many post-processing attacks. Comparative analysis with existing methods shows the superiority of the proposed method (DEC-GLCM) with regard to detection accuracy.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Li-sheng Wei ◽  
Quan Gan ◽  
Tao Ji

Skin diseases have a serious impact on people’s life and health. Current research proposes an efficient approach to identify singular type of skin diseases. It is necessary to develop automatic methods in order to increase the accuracy of diagnosis for multitype skin diseases. In this paper, three type skin diseases such as herpes, dermatitis, and psoriasis skin disease could be identified by a new recognition method. Initially, skin images were preprocessed to remove noise and irrelevant background by filtering and transformation. Then the method of grey-level co-occurrence matrix (GLCM) was introduced to segment images of skin disease. The texture and color features of different skin disease images could be obtained accurately. Finally, by using the support vector machine (SVM) classification method, three types of skin diseases were identified. The experimental results demonstrate the effectiveness and feasibility of the proposed method.


Author(s):  
Ann Nosseir ◽  
Seif Eldin A. Ahmed

Having a system that classifies different types of fruits and identifies the quality of fruits will be of a value in various areas especially in an area of mass production of fruits’ products. This paper presents a novel system that differentiates between four fruits types and identifies the decayed ones from the fresh. The algorithms used are based on the colour and the texture features of the fruits’ images. The algorithms extract the RGB values and the first statistical order and second statistical of the Gray Level Co-occurrence Matrix (GLCM) values. To segregate between the fruits’ types, Fine, Medium, Coarse, Cosine, Cubic, and Weighted K-Nearest Neighbors algorithms are applied. The accuracy percentages of each are 96.3%, 93.8%, 25%, 83.8%, 90%, and 95% respectively.  These steps are tested with 46 pictures taken from a mobile phone of seasonal fruits at the time i.e., banana, apple, and strawberry. All types were accurately identifying.  To tell apart the decayed fruits from the fresh, the linear and quadratic Support Vector Machine (SVM) algorithms differentiated between them based on the colour segmentation and the texture feature algorithms values of each fruit image. The accuracy of the linear SVM is 96% and quadratic SVM 98%.


2021 ◽  
Vol 35 (3) ◽  
pp. 201-207
Author(s):  
Halaguru Basavarajappa Basanth Kumar ◽  
Haranahalli Rajanna Chennamma

With the rapid advancement in digital image rendering techniques, allows the user to create surrealistic computer graphic (CG) images which are hard to distinguish from photographs captured by digital cameras. In this paper, classification of CG images and photographic (PG) images based on fusion of global features is presented. Color and texture of an image represents global features. Texture feature descriptors such as gray level co-occurrence matrix (GLCM) and local binary pattern (LBP) are considered. Different combinations of these global features are investigated on various datasets. Experimental results show that, fusion of color and texture features subset can achieve best classification results over other feature combinations.


Author(s):  
Priyesh Tiwari ◽  
Shivendra Nath Sharan ◽  
Kulwant Singh ◽  
Suraj Kamya

Content based image retrieval (CBIR), is an application of real-world computer vision domain where from a query image, similar images are searched from the database. The research presented in this paper aims to find out best features and classification model for optimum results for CBIR system.Five different set of feature combinations in two different color domains (i.e., RGB & HSV) are compared and evaluated using Neural Network Classifier, where best results obtained are 88.2% in terms of classifier accuracy. Color moments feature used comprises of: Mean, Standard Deviation,Kurtosis and Skewness. Histogram features is calculated via 10 probability bins. Wang-1k dataset is used to evaluate the CBIR system performance for image retrieval.Research concludes that integrated multi-level 3D color-texture feature yields most accurate results and also performs better in comparison to individually computed color and texture features.


Sign in / Sign up

Export Citation Format

Share Document