scholarly journals Implementation of Multiprocessing and Multithreading for End Node Middleware Control on Internet of Things Devices

Jurnal INFORM ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 54-60
Author(s):  
Iwan Kurnianto Wibowo ◽  
Adnan Rachmat Anom Besari ◽  
Muh. Rifqi Rizqullah

Previously, an educational robot system was built by incorporating Internet of Things (IoT) elements. Over time, this educational robot has been implanted with a middleware. Middleware has a role in receiving command data from the real-time database, access sensors, actuators, and sending feedback. Middleware contains protocols that translate commands between high-level programming and Raspberry Pi hardware. The focus of this research is to improve the performance of the middleware to pursue processing time efficiency. For this reason, it is necessary to implement multiprocessing and multithreading in handling several tasks. The CPU division has been adjusted automatically to not work on just one core or block of memory. Several program functions can run in parallel and reduce program execution time efficiently. The tasks handled are sensor reading and actuator control in the form of a motor. Testing has been carried out to perform multiprocessing and multithreading tasks to process six sensors and five actuators. Multiprocessing requires an average of 1.00% to 15.00% CPU usage and 2.70% memory usage. Meanwhile, multithreading involves an average of 1.00% to 71.00% CPU usage and 3.30% memory usage.

Author(s):  
Fernando Oliveira ◽  
Júlio Mattos

JavaScript language (JS) has been widely used in recent years applied to browsers-context. Yet JS is being applied to other backgrounds such as server-side programming, mobile applications, games, robotics, and the Internet of Things (IoT). JavaScript is suitable for programming IoT devices due to eventdriven oriented architecture. However, it is an interpreted language, so it has a lower performance than a compiled language. This paper assesses the use of WebAssembly as a strategy to improve the performance of JavaScript applications in the IoT environment. The experiments were performed on a Raspberry Pi using the Ostrich Benchmark Suite. We run the algorithms in JavaScript, WebAssembly, and C language while collecting data about device resource consumption. Our results showed that JavaScript performance could be improved by 39.81% in terms of execution time, a tiny gain in memory usage, and reduced battery consumption by 39.86% when using WebAssembly.


Author(s):  
Norliza Katuk ◽  
Ikenna Rene Chiadighikaobi

Many previous studies had proven that The PRESENT algorithm is ultra-lightweight encryption. Therefore, it is suitable for use in an IoT environment. However, the main problem with block encryption algorithms like PRESENT is that it causes attackers to break the encryption key. In the context of a fingerprint template, it contains a header and many zero blocks that lead to a pattern and make it easier for attackers to obtain an encryption key. Thus, this research proposed header and zero blocks bypass method during the block pre-processing to overcome this problem. First, the original PRESENT algorithm was enhanced by incorporating the block pre-processing phase. Then, the algorithm’s performance was tested using three measures: time, memory usage, and CPU usage for encrypting and decrypting fingerprint templates. This study demonstrated that the proposed method encrypted and decrypted the fingerprint templates faster with the same CPU usage of the original algorithm but consumed higher memory. Thus, it has the potential to be used in IoT environments for security.


2018 ◽  
Vol 9 (2) ◽  
pp. 130-140
Author(s):  
Januar Al Amien ◽  
Evans Fuad ◽  
Muhammad Waqi Azizi

Meluasnya penerapan mikrokontroler dalam kehidupan kita sehari-hari mendorong penerapan yang lebih dalam, seperti mesin cuci piring pintar, kendali kendaraan pintar, serta perangkat rumah pintar yang merupakan ide-ide menarik untuk diterapkan. Aktivitas perkuliahan yang berlangsung dari pagi hingga malam hari mengindikasikan intensitas penggunaan energi listrik yang tinggi. Hal ini dikarenakan pembagian jadwal perkuliahan yang ada, didapatkan rata-rata kejadian kondisi perangkat kelistrikan ditinggalkan dalam kondisi hidup setelah perkuliahan selesai adalah 6-10 ruangan per hari per lokasi antara kampus 1 dan kampus 2. Tingginya tingkat pemborosan energi oleh ruangan yang ditinggalkan dalam kondisi perangkat listrik yang tetap hidup setelah aktivitas perkuliahan selesai, mendorong penerapan penggunaan algoritme heuristik sebagai kerangka kerja sistem pengendalian perangkat listrik otomatis. Sistem ini akan membantu penghematan biaya penggunaan energi listrik. Didukung oleh algoritme heuristik A-star, penerapan mikrokontroler Raspberry Pi 3 sebagai sistem kontrol utama sistem otomasi kelistrikan rumah/bangunan memberikan solusi penghematan konsumsi dan efektivitas penggunaan listrik.   Kata kunci: mikrokontroler, algoritme heuristik, internet of things, efektivitas dan penghematan listrik   Abstract           The widespread application of microcontrollers in our daily lives is a deeper application, such as smart dishwashers, smart vehicle access, and smart home devices which are interesting ideas to implement. Lecture activities that take place from morning to night indicate the high intensity of electrical energy usage. This is due to the distribution of the existing lecture schedule. It is found that the average incidence of electrical equipment left in living conditions after the lecture is complete is 6-10 rooms per day per location between campus 1 and campus 2. The high level of waste of energy by the room left in the condition electrical devices that remain alive after lecture activities are completed, encouraging the application of the use of heuristic algorithms as a framework for automated electrical appliance control systems. This system will help save the cost of using electricity. Supported by the A-star heuristic algorithm, the application of the Raspberry Pi 3 microcontroller as the main control system of home / building electrical automation systems provides solutions of saving consumption and the effectiveness of electricity usage.   Keywords: microcontroller, heuristic algorithm, effectiveness and saving electricity  


Smart Cities ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 894-918
Author(s):  
Luís Rosa ◽  
Fábio Silva ◽  
Cesar Analide

The evolution of Mobile Networks and Internet of Things (IoT) architectures allows one to rethink the way smart cities infrastructures are designed and managed, and solve a number of problems in terms of human mobility. The territories that adopt the sensoring era can take advantage of this disruptive technology to improve the quality of mobility of their citizens and the rationalization of their resources. However, with this rapid development of smart terminals and infrastructures, as well as the proliferation of diversified applications, even current networks may not be able to completely meet quickly rising human mobility demands. Thus, they are facing many challenges and to cope with these challenges, different standards and projects have been proposed so far. Accordingly, Artificial Intelligence (AI) has been utilized as a new paradigm for the design and optimization of mobile networks with a high level of intelligence. The objective of this work is to identify and discuss the challenges of mobile networks, alongside IoT and AI, to characterize smart human mobility and to discuss some workable solutions to these challenges. Finally, based on this discussion, we propose paths for future smart human mobility researches.


Author(s):  
Rutvik Solanki

Abstract: Technological advancements such as the Internet of Things (IoT) and Artificial Intelligence (AI) are helping to boost the global agricultural sector as it is expected to grow by around seventy percent in the next two decades. There are sensor-based systems in place to keep track of the plants and the surrounding environment. This technology allows farmers to watch and control farm operations from afar, but it has a few limitations. For farmers, these technologies are prohibitively expensive and demand a high level of technological competence. Besides, Climate change has a significant impact on crops because increased temperatures and changes in precipitation patterns increase the likelihood of disease outbreaks, resulting in crop losses and potentially irreversible plant destruction. Because of recent advancements in IoT and Cloud Computing, new applications built on highly innovative and scalable service platforms are now being developed. The use of Internet of Things (IoT) solutions has enormous promise for improving the quality and safety of agricultural products. Precision farming's telemonitoring system relies heavily on Internet of Things (IoT) platforms; therefore, this article quickly reviews the most common IoT platforms used in precision agriculture, highlighting both their key benefits and drawbacks


Transmisi ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 117-122
Author(s):  
Sadr Lufti Mufreni ◽  
Esi Putri Silmina

Indonesia merupakan negara kepulauan yang mempunyai lebih dari 13.000 pulau. Wilayahnya terletak di antara Samudera Hindia dan Samudera Pasifik dan dilewati oleh Pacific Ring of Fire sehingga banyak gunung berapi aktif. Berdasarkan letak geografis mempunyai potensi tsunami dan gempa bumi cukup tinggi. Diperlukan rencana penanggulangan bencana yang baik untuk menekan risiko yang bisa terjadi, salah satunya dengan mitigasi bencana. Mitigasi bencana adalah serangkaian upaya untuk mengurangi risiko bencana, baik melalui pembangunan fisik maupun penyadaran dan peningkatan kemampuan menghadapi ancaman bencana. Mitigasi bencana diperlukan untuk mengurangi dampak yang ditimbulkan terutama korban jiwa. Salah satunya dengan menggunakan sistem peringatan dini. Sistem peringatan dini terdiri dari 3 komponen utama yaitu sensor untuk mendapatkan nilai dari suatu lingkungan, controller untuk mengolah nilai yang diterima, dan aksi yang dilakukan berdasarkan hasil dari pengolahan. Untuk membuat sistem yang efektif diperlukan komunikasi yang memadai. Messaging queue digunakan oleh industri untuk komunikasi antar perangkat lunak, perangkat keras, dan embedded system. Penelitian berfokus pada penggunaan ActiveMQ Artemis sebagai messaging queue sebagai server untuk komunikasi dengan internet of things (IoT). Keunggulan ActiveMQ Artemis dapat dijalankan di Raspberry Pi 3 dengan sedikit modifikasi. Hasil penelitian membuktikan bahwa ActiveMQ Artemis dapat digunakan untuk komunikasi IoT pada simulasi sistem mitigasi bencana.


2021 ◽  
Vol 39 (4) ◽  
pp. 1-33
Author(s):  
Fulvio Corno ◽  
Luigi De Russis ◽  
Alberto Monge Roffarello

In the Internet of Things era, users are willing to personalize the joint behavior of their connected entities, i.e., smart devices and online service, by means of trigger-action rules such as “IF the entrance Nest security camera detects a movement, THEN blink the Philips Hue lamp in the kitchen.” Unfortunately, the spread of new supported technologies makes the number of possible combinations between triggers and actions continuously growing, thus motivating the need of assisting users in discovering new rules and functionality, e.g., through recommendation techniques. To this end, we present , a semantic Conversational Search and Recommendation (CSR) system able to suggest pertinent IF-THEN rules that can be easily deployed in different contexts starting from an abstract user’s need. By exploiting a conversational agent, the user can communicate her current personalization intention by specifying a set of functionality at a high level, e.g., to decrease the temperature of a room when she left it. Stemming from this input, implements a semantic recommendation process that takes into account ( a ) the current user’s intention , ( b ) the connected entities owned by the user, and ( c ) the user’s long-term preferences revealed by her profile. If not satisfied with the suggestions, then the user can converse with the system to provide further feedback, i.e., a short-term preference , thus allowing to provide refined recommendations that better align with the original intention. We evaluate by running different offline experiments with simulated users and real-world data. First, we test the recommendation process in different configurations, and we show that recommendation accuracy and similarity with target items increase as the interaction between the algorithm and the user proceeds. Then, we compare with other similar baseline recommender systems. Results are promising and demonstrate the effectiveness of in recommending IF-THEN rules that satisfy the current personalization intention of the user.


Author(s):  
John P.T. Mo ◽  
Ronald C. Beckett

Since the announcement of Industry 4.0 in 2012, multiple variants of this industry paradigm have emerged and built on the common platform of Internet of Things. Traditional engineering driven industries such as aerospace and automotive are able to align with Industry 4.0 and operate on requirements of the Internet of Things platform. Process driven industries such as water treatment and food processing are more influenced by societal perspectives and evolve into Water 4.0 or Dairy 4.0. In essence, the main outcomes of these X4.0 (where X can be any one of Quality, Water or a combination of) paradigms are facilitating communications between socio-technical systems and accumulating large amount of data. As the X4.0 paradigms are researched, defined, developed and applied, many real examples in industries have demonstrated the lack of system of systems design consideration, e.g. the issue of training together with the use of digital twin to simulate operation scenarios and faults in maintenance may lag behind events triggered in the hostile real world environment. This paper examines, from a high level system of systems perspective, how transdisciplinary engineering can incorporate data quality on the often neglected system elements of people and process while adapting applications to operate within the X4.0 paradigms.


Sign in / Sign up

Export Citation Format

Share Document