scholarly journals Zonal Detached-Eddy Simulation Applied to the Tip-Clearance Flow in an Axial Compressor

AIAA Journal ◽  
2016 ◽  
Vol 54 (8) ◽  
pp. 2377-2391 ◽  
Author(s):  
W. Riéra ◽  
J. Marty ◽  
L. Castillon ◽  
S. Deck
Author(s):  
Chunill Hah ◽  
Jo¨rg Bergner ◽  
Heinz-Peter Schiffer

The current paper reports on investigations aimed at advancing the understanding of the flow mechanism that leads to the onset of short-length scale rotating stall in a transonic axial compressor. Experimental data show large oscillation of the tip clearance vortex as the rotor operates near the stall condition. Inception of spike-type rotating stall is also measured in the current transonic compressor with high response pressure transducers. Computational studies of a single passage and the full annulus were carried out to identify flow mechanisms behind the spike-type stall inception in the current transonic compressor rotor. Steady and unsteady single passage flow simulations were performed, first to get insight into the interaction between the tip clearance vortex and the passage shock. The conventional Reynolds-averaged Navier-Stokes method with a standard turbulence closure scheme does not accurately reproduce tip clearance vortex oscillation and the measured unsteady pressure field. Consequently, a Large Eddy Simulation (LES) was carried out to capture more relevant physics in the computational simulation of the rotating stall inception. The unsteady random behavior of the tip clearance vortex and it’s interaction with the passage shock seem to be critical ingredients in the development of spike-type rotating stall in a transonic compressor. The Large Eddy Simulation was further extended to the full annulus to identify flow mechanisms behind the measured spike-type rotating stall inception. The current study shows that the spike-type rotating stall develops after the passage shock is fully detached from the blade passages. Interaction between the tip clearance vortex and the passage shock creates a low momentum area near the pressure side of the blade. As the mass flow rate decreases, this low momentum area moves further upstream and reversed tip clearance flow is initiated at the trailing edge plane. Eventually, the low momentum area near the pressure side reaches the leading edge and forward spillage of the tip clearance flow occurs. The flows in the affected blade passage or passages then stall. As the stalled blade passages are formed behind the passage shock, the stalled area rotates counter to the blade rotation just like the classical Emmon’s type rotating stall. Both the measurements and the computations show that the rotating stall cell covers one to two blade passage lengths and rotates at roughly 50% of the rotor speed.


Author(s):  
Tianrui Sun ◽  
Paul Petrie-Repar ◽  
Damian M. Vogt

Prediction of the aerodynamic stability of rotor blades at the last stage of steam turbines is of great importance and widely studied. Considering the large span and low natural frequency of these blades, flow at the tip region has a remarkable effect on blade flutter characteristics. However, the transonic tip-clearance flow in these blades has a complex structure of vortices. To obtain a deep understanding of the transonic tip-clearance flow structure in steam turbines, the Detached-Eddy Simulation (DES) is applied in this paper. DES is a hybrid LES/RANS method that activates LES in specified flow regions and applies URANS in other regions of the flow field. As far as we are aware, the tip-clearance flow structure of real-scale last stage steam turbine by high-fidelity numerical method had not been much analyzed in open literature. In this paper, the transonic tip-clearance flow structure in modern last stage of steam turbines is analyzed by both URANS and DES approaches. The open steam turbine model designed by Durham University is chosen as the research model. The flow solver applied is the commercial software ANSYS CFX. From the DES result, the tip leakage vortex and the induced vortices are presented. Based on the comparison between tip-clearance flow structure captured by the two approaches, the URANS method is not able to resolve all induced vortices. Therefore, the distribution of aerodynamic loading on the blade surface is different between URANS and DES results. The present study serves as a basis for investigating the influence of the tip-clearance flow structure on blade aeroelasticity.


Author(s):  
Chunill Hah

Effects of axial casing grooves (ACGs) on the stall margin and efficiency of a one and a half stage low-speed axial compressor with a large rotor tip gap are investigated in detail. The primary focus of the current paper is to identify the flow mechanisms behind the changes in stall margin and on the efficiency of the compressor stage with a large rotor tip gap. Semicircular axial grooves installed in the rotor’s leading edge area are investigated. A large eddy simulation (LES) is applied to calculate the unsteady flow field in a compressor stage with ACGs. The calculated flow fields are first validated with previously reported flow visualizations and stereo PIV (SPIV) measurements. An in-depth examination of the calculated flow field indicates that the primary mechanism of the ACG is the prevention of full tip leakage vortex (TLV) formation when the rotor blade passes under the axial grooves periodically. The TLV is formed when the incoming main flow boundary layer collides with the tip clearance flow boundary layer coming from the opposite direction near the casing and rolls up around the rotor tip vortex. When the rotor passes directly under the axial groove, the tip clearance flow boundary layer on the casing moves into the ACGs and no roll-up of the incoming main flow boundary layer can occur. Consequently, the full TLV is not formed periodically as the rotor passes under the open casing of the axial grooves. Axial grooves prevent the formation of the full TLV. This periodic prevention of the full TLV generation is the main mechanism explaining how the ACGs extend the compressor stall margin by reducing the total blockage near the rotor tip area. Flows coming out from the front of the grooves affect the overall performance as it increases the flow incidence near the leading edge and the blade loading with the current ACGs. The primary flow mechanism of the ACGs is periodic prevention of the full TLV formation. Lower efficiency and reduced pressure rise at higher flow rates for the current casing groove configuration are due to additional mixing between the main passage flow and the flow from the grooves. At higher flow rates, blockage generation due to this additional mixing is larger than any removal of the flow blockage by the grooves. Furthermore, stronger double-leakage tip clearance flow is generated with this additional mixing with the ACGs at a higher flow rate than that of the smooth wall.


Author(s):  
Wei Zhu ◽  
Songtao Wang ◽  
Longxin Zhang ◽  
Jun Ding ◽  
Zhongqi Wang

This study aimed to enhance the understanding of flow phenomena in low-reaction aspirated compressors. Three-dimensional, multi-passage steady and unsteady numerical simulations are performed to investigate the performance sensitivity to tip clearance variation on the first-stage rotor of a multistage low-reaction aspirated compressor. Three kinds of tip clearance sizes including 1.0τ, 2.0τ and 3.0τ are modeled, in which 1.0τ corresponds to the designed tip clearance size of 0.2 mm. The steady numerical simulations show that the overall performance of the rotor moves toward lower mass flow rate when the tip clearance size is increased. Moreover, energy losses, efficiency reduction and stall margin decrease are also observed with increasing tip clearance size. This can be mostly attributed to the damaging impact of intense tip clearance flow. For unsteady simulation, the result shows periodical oscillation of the tip leakage vortex and a “two-passage periodic structure” in the tip region at the near-stall point. The occurrence of the periodical oscillation is due to the severe interaction between the tip clearance flow and the shock wave. However, the rotor operating state is still stable at this working point because a dynamic balance is established between the tip clearance flow and incoming flow.


2013 ◽  
Vol 136 (4) ◽  
Author(s):  
William Riéra ◽  
Lionel Castillon ◽  
Julien Marty ◽  
Francis Leboeuf

In the present study, the influence of the inlet condition on the tip clearance flow of an axial compressor is investigated. Two different zonal detached eddy simulations (ZDES) computations are carried out and compared to Reynolds-averaged Navier–Stokes (RANS) and unsteady RANS (URANS) computations as well as to experimental data. A rotating distortion map of the flow cartography is set as inlet condition for the first ZDES computation. An azimuthally averaged inlet condition is used for the second one and uncouples the rotor tip-leakage vortex flutter phenomenon, which stems from the arrival of the inlet guide vane wake from the behavior inherent to the rotor tip-leakage vortex. In the studied configuration, the inlet guide vane tip vortex reveals to lower the effects from double leakage on the rotor. The topology of the rotor tip-leakage vortex is described, and its development is analyzed.


Author(s):  
Chunill Hah ◽  
Michael Hathaway ◽  
Joseph Katz

The primary focus of this paper is to investigate the effect of rotor tip gap size on how the rotor unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor at near stall operation (for example, where maximum pressure rise is obtained). A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at this flow condition with both a small and a large tip gaps. The numerically obtained flow fields at the small clearance matches fairly well with the available initial measurements obtained at the Johns Hopkins University with 3-D unsteady PIV in an index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. The numerical results are also compared with previously published measurements in a low speed single stage compressor (Maerz et al. [2002]). The current study shows that, with the smaller rotor tip gap, the tip clearance vortex moves to the leading edge plane at near stall operating condition, creating a nearly circumferentially aligned vortex that persists around the entire rotor. On the other hand, with a large tip gap, the clearance vortex stays inside the blade passage at near stall operation. With the large tip gap, flow instability and related large pressure fluctuation at the leading edge are observed in this one and a half stage compressor. Detailed examination of the unsteady flow structure in this compressor stage reveals that the flow instability is due to shed vortices near the leading edge, and not due to a three-dimensional separation vortex originating from the suction side of the blade, which is commonly referred to during a spike-type stall inception. The entire tip clearance flow is highly unsteady. Many vortex structures in the tip clearance flow, including the sheet vortex system near the casing, interact with each other. The core tip clearance vortex, which is formed with the rotor tip gap flows near the leading edge, is also highly unsteady or intermittent due to pressure oscillations near the leading edge and varies from passage to passage. For the current compressor stage, the evidence does not seem to support that a classical vortex breakup occurs in any organized way, even with the large tip gap. Although wakes from the IGV influence the tip clearance flow in the rotor, the major characteristics of rotor tip clearance flows in isolated or single stage rotors are observed in this one and a half stage axial compressor.


1998 ◽  
Author(s):  
E. S. Politis ◽  
K. C. Giannakoglou ◽  
K. D. Papailiou

Innovative measurements of tip-clearance flow for the 3rd stage rotor embedded in a four stage Low-Speed Research Compressor are presented in the companion ASME paper. Here, in Part 2, the rotor flow is numerically simulated through a Navier-Stokes solver implementing the k-ε turbulence model. The 3rd stage rows are considered as discrete parts of the same computational domain and the flow in each one of them is treated as steady in the corresponding system of reference. An iterative, though loose, coupling between the rotor exit and the stator inlet is established by artificially increasing the inter-row distance. To model tip-clearance flow effects with sufficient accuracy, a two-block grid system per row is used. Comparisons with measurements published in Part 1 for the average flow quantities at the exit of both rows are presented. Row patterns close to the rotor tip-clearance region are illustrated.


Author(s):  
K. Yamada ◽  
K. Funazaki ◽  
H. Sasaki

The purpose of this study is to have a better understanding of the unsteady behavior of tip clearance flow at near-stall condition from a multi-passage simulation and to clarify the relation between such unsteadiness and rotating disturbance. This study is motivated by the following concern. A single passage simulation has revealed the occurrence of the tip leakage vortex breakdown at near-stall condition in a transonic axial compressor rotor, leading to the unsteadiness of the tip clearance flow field in the rotor passage. These unsteady flow phenomena were similar to those in the rotating instability, which is classified in one of the rotating disturbances. In other words it is possible that the tip leakage vortex breakdown produces a rotating disturbance such as the rotating instability. Three-dimensional unsteady RANS calculation was conducted to simulate the rotating disturbance in a transonic axial compressor rotor (NASA Rotor 37). The four-passage simulation was performed so as to capture a short length scale disturbance like the rotating instability and the spike-type stall inception. The simulation demonstrated that the unsteadiness of tip leakage vortex, which was derived from the vortex breakdown at near-stall condition, invoked the rotating disturbance in the rotor, which is similar to the rotating instability.


Sign in / Sign up

Export Citation Format

Share Document