Semi-Analytical Tip Vortex Model for Fast Prediction of Contrarotating Open Rotor Noise

AIAA Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Damiano Tormen ◽  
Pietro Giannattasio ◽  
Alessandro Zanon ◽  
Michele De Gennaro ◽  
Helmut Kühnelt
2021 ◽  
pp. 1-26
Author(s):  
Tianxiao Yang ◽  
Wenjun Yu ◽  
Dong Liang ◽  
Xiang He ◽  
Zhenguo Zhao

Abstract In this paper, a novel Contra-Rotating Open Rotor (CROR) noise reduction methodology based upon the anhedral blade tip applied to the front blade is developed. Results indicate that anhedral blade tip can provide noise reduction over 60 deg. polar angle range in both upstream and downstream areas at takeoff condition. The noise reduction becomes more significant as the lean angle of anhedral blade tip increases, and the maximum noise reduction is over 4 dB. Further analysis shows that anhedral blade tip decreases the strength and size of blade tip vortex shed from the front blade, and reduces its interaction with the rear rotor, which decreases the fluctuation of loading acting on the rear rotor and its loading noise. Furthermore, the anhedral blade tip does not have strong effect on the aerodynamic performance of CROR at cruise.


Author(s):  
Damiano Tormen ◽  
Pietro Giannattasio ◽  
Alessandro Zanon ◽  
Helmut Kühnelt ◽  
Michele De Gennaro

The present work focuses on the fast prediction of the interaction noise (IN) components of a Contra Rotating Open Rotor (CROR) engine at take-off. The flow field past the CROR is computed using a steady RANS approach coupled with the concept of mixing plane between the rotors to remove the flow unsteadiness due to the propeller interaction. The effects of such interaction are then recovered applying the analytical model of Jaron et al. (2014), balanced with data extracted from the RANS solution, to extrapolate the information about the wake of the front rotor and the potential flow fields through the mixing plane. This RANS-informed approximation allows recovering the unsteadiness of the flow-blades interaction in terms of unsteady blade response. The tonal noise at the blade passing frequency and the interaction noise are then estimated using the analytical frequency domain model proposed by Hanson (1985). The present method for the fast prediction of CROR noise has been validated by comparison with the results of URANS simulations and noise measurements. CROR geometry UDF F7/A7 with both 8 × 8 and 11 × 9 blade counts has been considered. The flow velocity profiles extrapolated through the mixing plane agree well with the URANS results, except in the vicinity of the blade tip, where the analytical extrapolation method is not able to deal properly with the strongly 3D tip vortex flow. The comparison of the predicted interaction noise with acoustic measurements shows that the present fast RANS-informed approach is capable of estimating the directivity of the CROR noise with reasonable accuracy.


Author(s):  
Dale E. Van Zante ◽  
Edmane Envia

The rising cost of jet fuel has renewed interest in contra-rotating open rotor propulsion systems. Contemporary design methods offer the potential to maintain the inherently high aerodynamic efficiency of open rotors while greatly reducing their noise output, something that was not feasible in the 1980’s designs. The primary source mechanisms of open rotor noise generation are thought to be the front rotor wake and tip vortex interacting with the aft rotor. In this paper, advanced measurement techniques and high-fidelity prediction tools are used to gain insight into the relative importance of the contributions to the open rotor noise signature of the front rotor wake and rotor tip vortex. The measurements include three-dimensional particle image velocimetry of the intra-rotor flowfield and the acoustic field of a model-scale open rotor. The predictions provide the unsteady flowfield and the associated acoustic field. The results suggest that while the front rotor tip vortex can have a significant influence on the blade passing tone noise produced by the aft rotor, the front rotor wake plays the decisive role in the generation of the interaction noise produced as a result of the unsteady aerodynamic interaction of the two rotors. At operating conditions typical of takeoff and landing operations, the interaction noise level is easily on par with that generated by the individual rotors, and in some cases is even higher. This suggests that a comprehensive approach to reducing open rotor noise should include techniques for mitigating the wake of the front rotor as well as eliminating the interaction of the front rotor tip vortex with the aft rotor blade tip.


2014 ◽  
Vol 118 (1208) ◽  
pp. 1125-1135 ◽  
Author(s):  
M. J. Kingan

Abstract The purpose of this paper is to describe the current status of open rotor noise prediction methods and to highlight future challenges in this area. A number of analytic and numerical methods are described which can be used for predicting ‘isolated’ and ‘installed’ open rotor tonal noise. Broadband noise prediction methods are also described and it is noted that further development and validation of the current models is required. The paper concludes with a discussion of the analytical methods which are used to assess the acoustic data collected during the high-speed wind-tunnel testing of a model scale advanced open rotor rig.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Andreas Peters ◽  
Zoltán S. Spakovszky

Due to their inherent noise challenge and potential for significant reductions in fuel burn, counter-rotating propfans (CRPs) are currently being investigated as potential alternatives to high-bypass turbofan engines. This paper introduces an integrated noise and performance assessment methodology for advanced propfan powered aircraft configurations. The approach is based on first principles and combines a coupled aircraft and propulsion system mission and performance analysis tool with 3D unsteady, full-wheel CRP computational fluid dynamics computations and aeroacoustic simulations. Special emphasis is put on computing CRP noise due to interaction tones. The method is capable of dealing with parametric studies and exploring noise reduction technologies. An aircraft performance, weight and balance, and mission analysis was first conducted on a candidate CRP powered aircraft configuration. Guided by data available in the literature, a detailed aerodynamic design of a pusher CRP was carried out. Full-wheel unsteady 3D Reynolds-averaged Navier-Stokes (RANS) simulations were then used to determine the time varying blade surface pressures and unsteady flow features necessary to define the acoustic source terms. A frequency domain approach based on Goldstein’s formulation of the acoustic analogy for moving media and Hanson’s single rotor noise method was extended to counter-rotating configurations. The far field noise predictions were compared to measured data of a similar CRP configuration and demonstrated good agreement between the computed and measured interaction tones. The underlying noise mechanisms have previously been described in literature but, to the authors’ knowledge, this is the first time that the individual contributions of front-rotor wake interaction, aft-rotor upstream influence, hub-endwall secondary flows, and front-rotor tip-vortices to interaction tone noise are dissected and quantified. Based on this investigation, the CRP was redesigned for reduced noise incorporating a clipped rear-rotor and increased rotor-rotor spacing to reduce upstream influence, tip-vortex, and wake interaction effects. Maintaining the thrust and propulsive efficiency at takeoff conditions, the noise was calculated for both designs. At the interaction tone frequencies, the redesigned CRP demonstrated an average reduction of 7.25 dB in mean sound pressure level computed over the forward and aft polar angle arcs. On the engine/aircraft system level, the redesigned CRP demonstrated a reduction of 9.2 dB in effective perceived noise (EPNdB) and 8.6 EPNdB at the Federal Aviation Regulations (FAR) 36 flyover and sideline observer locations, respectively. The results suggest that advanced open rotor designs can possibly meet Stage 4 noise requirements.


AIAA Journal ◽  
2014 ◽  
Vol 52 (8) ◽  
pp. 1810-1817 ◽  
Author(s):  
Csaba Horváth ◽  
Edmane Envia ◽  
Gary G. Podboy

2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Nishad G. Sohoni ◽  
Cesare A. Hall ◽  
Anthony B. Parry

The aerodynamic impact of installing a horizontal pylon in front of a contra-rotating open rotor engine, at take-off, was studied. The unsteady interactions of the pylon's wake and potential field with the rotor blades were predicted by full-annulus URANS CFD calculations at 0 deg and 12 deg angle of attack (AoA). Two pylon configurations were studied: one where the front rotor blades move down behind the pylon (DBP), and one where they move up behind the pylon (UBP). When operating at 12 deg AoA, the UBP orientation was shown to reduce the rear rotor tip vortex sizes and separated flow regions, whereas the front rotor wake and vortex sizes were increased. In contrast, the DBP orientation was found to reduce the incidence variations onto the front rotor, leading to smaller wakes and vortices. The engine flow was also time-averaged, and the variation in work done on average midspan streamlines was shown to depend strongly on variation in incidence, along with a smaller contribution related to change of radius.


2011 ◽  
Vol 10 (4) ◽  
pp. 427-442 ◽  
Author(s):  
S. Y. Wie ◽  
D. K. Im ◽  
J. H. Kwon ◽  
D. J. Lee ◽  
K. H. Chung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document