Improvement in model reduction schemes using the system equivalent reduction expansion process

AIAA Journal ◽  
1996 ◽  
Vol 34 (10) ◽  
pp. 2217-2219 ◽  
Author(s):  
Michael Papadopoulos ◽  
Ephrahim Garcia
2018 ◽  
Vol 211 ◽  
pp. 06003
Author(s):  
Željan Lozina ◽  
Damir Sedlar ◽  
Ivan Tomac

A mechanical vibration inverse analysis has been performed on 150MW hydro-power machine in order to identify unbalanced magnetic pull. FEM model of the machine is developed according to design data. The System Equivalent Reduction Expansion Process is involved in model validation during the power-machine experimental run. The unbalanced magnetic pull in the generator is calculated from the verified model and monitored data.


2020 ◽  
Vol 23 (13) ◽  
pp. 2850-2865 ◽  
Author(s):  
Parsa Ghannadi ◽  
Seyed Sina Kourehli ◽  
Mohammad Noori ◽  
Wael A Altabey

Vibration-based structural damage identification through optimization techniques has become an interesting research topic in recent years. Dynamic characteristics such as frequencies and mode shapes are used to construct the objective function. The objective functions based on only frequencies are not very sensitive to damage in large structures. However, objective functions based on both mode shapes and frequencies are very effective. In real measurement condition, the number of installed sensors is limited, and there are no economic reasons for measuring the mode shapes at all degrees of freedom. In this kind of circumstances, mode expansion methods are used to address the incompleteness of mode shapes. In this article, the system equivalent reduction and expansion process is applied to determine the unmeasured mode shapes. Two experimental examples including a cantilever beam and a truss tower are investigated to show system equivalent reduction and expansion process’ efficiency in estimating unmeasured mode shapes. The results show that the technique used for expansion is influential. Damage identification is formulated as an optimization problem, and the residual force vector based on expanded mode shapes is considered as an objective function. In order to minimize the objective function, grey wolf optimization and Harris hawks optimization are used. Numerical studies on a 56-bar dome space truss and experimental validation on a steel frame are performed to demonstrate the efficiency of the developed approach. Both numerical and experimental results indicate that the combination of the grey wolf optimization and expanded mode shapes with system equivalent reduction and expansion process can provide a reliable approach for determining the severities and locations of damage of skeletal structures when it compares with those obtained by Harris hawks optimization.


Author(s):  
M.C.H.Mouat Pieter Nes

Reduction in water content of a soil increased the concentration of ammonium and nitrate in solution, but had no effect on the concentration of phosphate. The corresponding reduction in the quantity of phosphate in solution caused an equivalent reduction in the response of ryegrass to applied phosphate. Keywords: soil solution, soil water content, phosphate, ryegrass, nutrition.


Sign in / Sign up

Export Citation Format

Share Document