Use of finite element techniques in the determination of the acoustic properties of turbofan inlets

Author(s):  
R. SIGMAN ◽  
R. MAJJIGI ◽  
B. ZINN
2020 ◽  
Vol 835 ◽  
pp. 229-242
Author(s):  
Oboso P. Bernard ◽  
Nagih M. Shaalan ◽  
Mohab Hossam ◽  
Mohsen A. Hassan

Accurate determination of piezoelectric properties such as piezoelectric charge coefficients (d33) is an essential step in the design process of sensors and actuators using piezoelectric effect. In this study, a cost-effective and accurate method based on dynamic loading technique was proposed to determine the piezoelectric charge coefficient d33. Finite element analysis (FEA) model was developed in order to estimate d33 and validate the obtained values with experimental results. The experiment was conducted on a piezoelectric disc with a known d33 value. The effect of measuring boundary conditions, substrate material properties and specimen geometry on measured d33 value were conducted. The experimental results reveal that the determined d33 coefficient by this technique is accurate as it falls within the manufactures tolerance specifications of PZT-5A piezoelectric film d33. Further, obtained simulation results on fibre reinforced and particle reinforced piezoelectric composite were found to be similar to those that have been obtained using more advanced techniques. FE-results showed that the measured d33 coefficients depend on measuring boundary condition, piezoelectric film thickness, and substrate material properties. This method was proved to be suitable for determination of d33 coefficient effectively for piezoelectric samples of any arbitrary geometry without compromising on the accuracy of measured d33.


2021 ◽  
Vol 11 (4) ◽  
pp. 1482
Author(s):  
Róbert Huňady ◽  
Pavol Lengvarský ◽  
Peter Pavelka ◽  
Adam Kaľavský ◽  
Jakub Mlotek

The paper deals with methods of equivalence of boundary conditions in finite element models that are based on finite element model updating technique. The proposed methods are based on the determination of the stiffness parameters in the section plate or region, where the boundary condition or the removed part of the model is replaced by the bushing connector. Two methods for determining its elastic properties are described. In the first case, the stiffness coefficients are determined by a series of static finite element analyses that are used to obtain the response of the removed part to the six basic types of loads. The second method is a combination of experimental and numerical approaches. The natural frequencies obtained by the measurement are used in finite element (FE) optimization, in which the response of the model is tuned by changing the stiffness coefficients of the bushing. Both methods provide a good estimate of the stiffness at the region where the model is replaced by an equivalent boundary condition. This increases the accuracy of the numerical model and also saves computational time and capacity due to element reduction.


Author(s):  
Manish Kumar ◽  
Pronab Roy ◽  
Kallol Khan

From the recent literature, it is revealed that pipe bend geometry deviates from the circular cross-section due to pipe bending process for any bend angle, and this deviation in the cross-section is defined as the initial geometric imperfection. This paper focuses on the determination of collapse moment of different angled pipe bends incorporated with initial geometric imperfection subjected to in-plane closing and opening bending moments. The three-dimensional finite element analysis is accounted for geometric as well as material nonlinearities. Python scripting is implemented for modeling the pipe bends with initial geometry imperfection. The twice-elastic-slope method is adopted to determine the collapse moments. From the results, it is observed that initial imperfection has significant impact on the collapse moment of pipe bends. It can be concluded that the effect of initial imperfection decreases with the decrease in bend angle from 150∘ to 45∘. Based on the finite element results, a simple collapse moment equation is proposed to predict the collapse moment for more accurate cross-section of the different angled pipe bends.


1992 ◽  
Vol 19 (3) ◽  
pp. 454-462 ◽  
Author(s):  
F. E. Hicks ◽  
P. M. Steffler ◽  
R. Gerard

This paper describes the application of the characteristic-dissipative-Galerkin method to steady and unsteady open channel flow problems. The robust performance of this new finite element scheme is demonstrated in modeling the propagation of ice jam release surges over a 500 km reach of the Hay River in Alberta and Northwest Territories. This demonstration includes the automatic determination of steady flow profiles through supercritical–subcritical transitions, establishing the initial conditions for the unsteady flow analyses. The ice jam releases create a dambreak type of problem which begins as a very dynamic situation then develops into an essentially kinematic wave problem as the disturbance propagated downstream. The characteristic-dissipative-Galerkin scheme provided stable solutions not only for the extremes of dynamic and kinematic wave conditions, but also through the transition between the two. Key words: open channel flow, finite element method, dam break, surge propagation.


1983 ◽  
Vol 105 (2) ◽  
pp. 206-212 ◽  
Author(s):  
Hua-Ping Li ◽  
F. Ellyin

A plate weakened by an oblique penetration of a circular cylindrical hole has been investigated. The stress concentration around the hole is determined by a finite-element method. The results are compared with experimental data and other analytical works. Parametric studies of effects of angle of inclination, plate thickness, and width are performed. The maximum stress concentration factor (SCF) obtained from the finite-element analysis is higher than experimental results, and this deviation increases with the increase of angle of skewness. The major reason for this difference is attributed to the shear-action between layers parallel to the plate surface which cannot be directly included in the two-dimensional elements. An empirical formula is derived which accounts for the shear-action and renders the finite-element predictions in line with experimentally observed data.


Author(s):  
X. Wu ◽  
M. Vahdati ◽  
A. I. Sayma ◽  
M. Imregun

This paper reports the results of an ongoing research effort to explain the underlying mechanisms for aeroacoustic fan blade flutter. Using a 3D integrated aeroelasticity method and a single passage blade model that included a representation of the intake duct, the pressure rise vs. mass flow characteristic of a fan assembly was obtained for the 60%–80% speed range. A novel feature was the use of a downstream variable-area nozzle, an approach that allowed the determination of the stall boundary with good accuracy. The flutter stability was predicted for the 2 nodal diameter assembly mode arising from the first blade flap mode. The flutter margin at 64% speed was predicted to drop sharply and the instability was found to be independent of stall effects. On the other hand, the flutter instability at 74% speed was found to be driven by flow separation. Further post-processing of the results at 64% speed indicated significant unsteady pressure amplitude build-up inside the intake at the flutter condition, thus highlighting the link between the acoustic properties of the intake duct and fan blade flutter.


Sign in / Sign up

Export Citation Format

Share Document