Guidance Laws for Anti-Ship Missiles Using Impact Angle and Impact Time

Author(s):  
Bokyung Jung ◽  
Youdan Kim
Author(s):  
Shashi Ranjan Kumar ◽  
Debasish Ghose

This paper proposes a guidance strategy, which caters to both impact angle and impact time terminal constraints. This guidance scheme is based on switching between impact time and impact angle guidance laws. Unlike the existing impact time guidance laws, the proposed guidance strategy takes into account the curvature of the trajectory due to requirement of impact angle. The guidance law is derived using sliding mode control theory with the switching surface based on impact time error. The interceptor first corrects its course to nullify the impact time error and then aims to achieve interception with desired impact angle. In order to reduce transitions between the two guidance laws, a novel hysteresis loop is introduced in the switching conditions. The guidance law is initially designed for stationary targets, and later it is extended to constant velocity targets using the notion of predicted interception point. In order to validate the efficacy of the proposed guidance strategy, simulation results are presented with constant as well as realistic time-varying speed interceptor models for different engagement scenarios against stationary and constant velocity targets. The performance of the guidance law is evaluated under noisy measurements and the presence of system lag and its performance is compared with other existing guidance laws.


Author(s):  
Min-Guk Seo ◽  
Chang-Hun Lee ◽  
Tae-Hun Kim

A new design method for trajectory shaping guidance laws with the impact angle constraint is proposed in this study. The basic idea is that the multiplier introduced to combine the equations for the terminal constraints is used to shape a flight trajectory as desired. To this end, the general form of impact angle control guidance (IACG) is first derived as a function of an arbitrary constraint-combining multiplier using the optimal control. We reveal that the constraint-combining multiplier satisfying the kinematics can be expressed as a function of state variables. From this result, the constraint-combining multiplier to achieve a desired trajectory can be obtained. Accordingly, when the desired trajectory is designed to satisfy the terminal constraints, the proposed method directly can provide a closed form of IACG laws that can achieve the desired trajectory. The potential significance of the proposed result is that various trajectory shaping IACG laws that can cope with various guidance goals can be readily determined compared to existing approaches. In this study, several examples are shown to validate the proposed method. The results also indicate that previous IACG laws belong to the subset of the proposed result. Finally, the characteristics of the proposed guidance laws are analyzed through numerical simulations.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 29755-29763
Author(s):  
Mu Lin ◽  
Xiangjun Ding ◽  
Chunyan Wang ◽  
Li Liang ◽  
Jianan Wang

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Zhe Yang ◽  
Hui Wang ◽  
Defu Lin ◽  
Luyao Zang

A guidance problem for impact time and angle control applicable to cooperative attack is considered based on the sliding mode control. In order to satisfy the impact angle constraint, a line-of-sight rate polynomial function is introduced with four tuning parameters. And the time-to-go derivative with respect to a downrange orientation is derived to minimize the impact time error. Then the sliding mode control surface with impact time and angle constraints is constructed using nonlinear engagement dynamics to provide an accurate solution. The proposed guidance law is easily extended to a nonmaneuvering target using the predicted interception point. Numerical simulations are performed to verify the effectiveness of the proposed guidance law for different engagement scenarios.


Author(s):  
Hui Wang ◽  
Jiang Wang ◽  
Defu Lin

To study the optimal impact-angle-control guidance problem with multiple terminal constraints, a generalized optimal impact-angle-control guidance law with terminal acceleration response constraint (GOIACGL-TARC) is proposed. In the deriving, a time-to-go − nth power weighted object function is adopted to derived the GOIACGL-TARC and a general expression of GOIACGL-TARC is presented. Based on the general expression of GOIACGL-TARC, three guidance laws, GOIACGL-TARC1/TACC0/TACC1 are proposed and the inheritance relationship between GOIACGL-TACC0/TACC1/TARC1 and the conventional optimal guidance law with impact angle constraint is demonstrated. Performance analysis of the proposed guidance laws shows that in the case of GOIACGL-TACC0, the terminal acceleration is not zero at n = 0 and only as n > 0, the terminal acceleration converges to zero; in the case of GOIACGL-TACC1 and GOIACGL-TARC1, GOIACGL-TARC1 can guarantee the acceleration response to reach the exactly zero value but GOIACGL-TACC1 cannot, which can only guarantee the acceleration command to reach the exactly zero value. It is pointed out that compared with the biased proportional navigation guidance law, GOIACGL-TARC1 has an outstanding guidance performance in acceleration response, miss distance, and terminal impact angle error.


Sign in / Sign up

Export Citation Format

Share Document