A Preliminary Study of High Lift System Design and Actuation for a Personal Air Vehicle Concept

Author(s):  
Imon Chakraborty ◽  
Brian G. Lozano ◽  
Taewoo Nam ◽  
Dimitri N. Mavris
Author(s):  
Rajeevalochanam Prathapanayaka ◽  
Nanjundaiah Vinod Kumar ◽  
Krishnamurthy Settisara Janney ◽  
Hari Krishna Nagishetty

Recent interest in the field of micro and nano scale air vehicles attracted the attention of many researchers all over the world. The challenge associated with these classes of vehicles is to develop efficient miniaturized components. There are different types of micro and nano air vehicles out of which fixed wing micro air vehicle is one of them. Propulsion system for most of the fixed wing MAVs is propeller driven by an electric motor powered by a battery. The endurance of the MAV mainly depends on the performance of these two components. Hence there is a scope to improve the performance of the propeller and motor. Efficient propeller design and its performance analysis are an iterative process and time consuming. In the present study, to ease the process of propeller design and analysis NALPROPELLER code has been developed using MATLAB. This code is based on minimum induced loss theory presented by E.E.Larrabee to generate planform, blade element momentum theory along with Prandtl hub-tip loss model for overall performance analysis and the performance plots could be viewed in the GUI windows. The code consists of three modules namely single airfoil design, multi airfoil design and analysis module. This code is compared with one of the propeller design and analysis code available in the internet JavaProp by Martin Hepperle, which is also based on minimum induced loss method. From literature Eppler 193 airfoil show high lift to drag ratios at low Reynolds numbers [16]. Eppler-193 airfoil is used in the evaluation of propeller performance. A four inch diameter, two bladed, fixed pitch propeller is designed and analysed using this code. The design is compared with one of the design software JavaProp available online as an open source. A poly urethane casting propeller is fabricated based on the design. The performance comparison of the NALPROPELLER code, JavaProp and 3D CFD analysis is presented and discussed.


Author(s):  
Jianhua Cao ◽  
Xiangang Fu ◽  
Xianghui Lu ◽  
Xiaohua Jiang

Developing the advanced nuclear power plant design to meet the demanding safety, efficiency and environmental goals of electric utilities requires great efforts. A passive emergency feedwater system (PEFS) combined with other passive engineering safety features (PESF) is introduced into PCWA (Passive Combined With Active) designs. The typical accidents are calculated and analyzed for this safety system design, especially steam generator tube rupture (SGTR). It is preliminarily concluded that this safety system design in PCWA makes a great balance between passive and active safety systems, and no radioactive liquid was released to the environment except some steam from affected steam generator.


2006 ◽  
Vol 110 (1107) ◽  
pp. 327-331 ◽  
Author(s):  
U. Herrmann

Abstract A new approach for low-drag high-lift system design based on the application of viscous flow solvers was developed in the EC research project EPISTLE. Two high-lift systems for a supersonic commercial transport aircraft (SCT) wing were designed, manufactured and wind-tunnel tested. The predicted large drag reductions were fully confirmed by tests at high Reynolds numbers. These drag reductions significantly reduce the low-speed noise of future SCT configurations. This was estimated by preliminary aircraft design tools. Low-speed noise reduction by aerodynamic means is obtained, as effective high-lift systems enable these aircraft to climb faster.


1998 ◽  
Author(s):  
Eric Besnard ◽  
Adeline Schmitz ◽  
Edwan Boscher ◽  
Nicolas Garcia ◽  
Tuncer Cebeci

Author(s):  
John Gerdes ◽  
Hugh A. Bruck ◽  
Satyandra K. Gupta

The design of a flapping wing air vehicle is dependent on the interaction of drive motors and wings. In addition to the wing shape and spar arrangement, sizing and flapping kinematics affect vehicle performance due to wing deformation resulting from flapping motions. To achieve maximum payload and endurance, it is necessary to select a wing size and flapping rate that will ensure strong performance and compatibility with drive motor capabilities. Due to several conflicting trade-offs in system design, this is a challenging problem. We have conducted an experimental study of several wing sizes at multiple flapping rates to build an understanding of the design space and ensure acceptable vehicle performance. To support this study, we have designed a new custom test stand and data post-processing procedure. The results of this study are used to build a design methodology for flapping wing air vehicles with improved performance and to highlight system design challenges and strategies for mitigation. Using the methodology described in this paper, we have developed a new flapping wing air vehicle called the Robo Raven II. This vehicle uses larger wings than Robo Raven and flight tests have confirmed that Robo Raven II has a higher payload capacity.


Sign in / Sign up

Export Citation Format

Share Document