Automated Graph-Based Detection of Semantic Overlap across Heterogeneous Models to Support Inconsistency Identification

2022 ◽  
Author(s):  
Ruxandra Duca ◽  
Dimitri N. Mavris
Author(s):  
A. Paredes-Arriaga ◽  
A. Meléndez-López ◽  
A. Heredia ◽  
J. Cruz-Castañeda ◽  
A. Negrón-Mendoza ◽  
...  

2012 ◽  
Vol 524-527 ◽  
pp. 1232-1235 ◽  
Author(s):  
Li Feng Li ◽  
Xiang An Yue ◽  
Li Juan Zhang

Finding the breakthrough position of horizontal wells is essential to water plugging and improving oil production in bottom water drive reservoirs. Physical modeling was carried out in this paper to research the law of bottom water’s movement. The experimental results indicated that: pressure drop in wells, well trajectory and area reservoir heterogeneity were all sensitive factors for breakthrough of bottom water, and the entry points of horizontal wells were determined by the combined function of them. In different well trajectory models, the concave down part of the well cooperate with pressure drop influenced the breakthrough position. Bottom water below the heel end reached the well earliest if the concave down part located at the heel end. When the concave part located at the middle of the well, the two factors played role respectively which resulted in breaking through of bottom water at two places with larger swept area. In different heterogeneous models, permeability difference and pressure drop were both favorable factors for bottom water’s non-uniformly rise. In the model that the heel end located at high permeability part, bottom water under the heel end reached the well earliest. If the heel end was set at the low permeability part, the breakthrough of bottom water occurred at the middle of the well.


2009 ◽  
Vol 364 (1527) ◽  
pp. 2197-2207 ◽  
Author(s):  
Peter G. Foster ◽  
Cymon J. Cox ◽  
T. Martin Embley

The three-domains tree, which depicts eukaryotes and archaebacteria as monophyletic sister groups, is the dominant model for early eukaryotic evolution. By contrast, the ‘eocyte hypothesis’, where eukaryotes are proposed to have originated from within the archaebacteria as sister to the Crenarchaeota (also called the eocytes), has been largely neglected in the literature. We have investigated support for these two competing hypotheses from molecular sequence data using methods that attempt to accommodate the across-site compositional heterogeneity and across-tree compositional and rate matrix heterogeneity that are manifest features of these data. When ribosomal RNA genes were analysed using standard methods that do not adequately model these kinds of heterogeneity, the three-domains tree was supported. However, this support was eroded or lost when composition-heterogeneous models were used, with concomitant increase in support for the eocyte tree for eukaryotic origins. Analysis of combined amino acid sequences from 41 protein-coding genes supported the eocyte tree, whether or not composition-heterogeneous models were used. The possible effects of substitutional saturation of our data were examined using simulation; these results suggested that saturation is delayed by among-site rate variation in the sequences, and that phylogenetic signal for ancient relationships is plausibly present in these data.


Author(s):  
Olga V. Grigoreva ◽  
Viktor F. Mochalov ◽  
Vjasheslav A. Zelentsov

"The article proposes a method for assessing the state of natural objects that is based on the complex use of heterogeneous models and hyperspectral Earth remote sensing data used to estimate the parameters of these models. The base model is an artificial neural network, for the training of which multiparametric models of radiation transfer, gradient search algorithms, as well as regression empirical models supplementing them, can be used and adaptively adjusted. The advantage of the method is the ability to determine the state of water bodies and vegetation under conditions of uncertainty with the possibility of making more precise estimates for the limited volume of ground measurements at reference points. Examples of approbation of the method in determining the state of coastal waters of the Black Sea with the use of hyperspectral imaging materials from “Resurs-P” satellite, as well as in assessing the state of vineyards, are shown."


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 482
Author(s):  
Dharmendra Kumar ◽  
Arun Singh ◽  
Mohammad Israil

The magnetotelluric (MT) method is one of the useful geophysical techniques to investigate deep crustal structures. However, in hilly terrains, e.g., the Garhwal Himalayan region, due to the highly undulating topography, MT responses are distorted. Such responses, if not corrected, may lead to the incorrect interpretation of geoelectric structures. In the present paper, we implemented terrain corrections in MT data recorded from the Garhwal Himalayan Corridor (GHC). We used AP3DMT, a 3D MT data modeling and inversion code written in the MATLAB environment. Terrain corrections in the MT impedance responses for 39 sites along the Roorkee–Gangotri profile in the period range of 0.01 s to 1000 s were first estimated using a synthetic model by recording the topography and locations of MT sites. Based on this study, we established the general character of the terrain and established where terrain corrections were necessary. The distortion introduced by topography was computed for each site using homogenous and heterogeneous models with actual topographic variations. Period-dependent, galvanic and inductive distortions were observed at different sites. We further applied terrain corrections to the real data recorded from the GHC. The corrected data were inverted, and the inverted model was compared with the corresponding inverted model obtained with uncorrected data. The modification in electrical resistivity features in the model obtained from the terrain-corrected response suggests the necessity of terrain correction in MT data recorded from the Himalayan region.


2021 ◽  
Author(s):  
Jinfeng Liu ◽  
Jianwei Dong ◽  
Xuwen Jing ◽  
Xuwu Cao ◽  
Chenxiao Du ◽  
...  

Abstract In the process design and reuse of marine component products, there are a lot of heterogeneous models, causing the problem that the process knowledge and process design experience contained in them are difficult to express and reuse. Therefore, a process knowledge representation model for ship heterogeneous model is proposed in this paper. Firstly, the multi-element process knowledge graph is constructed, and the heterogeneous ship model is described in a unified way. Then, the multi-strategy ontology mapping method is applied, and the semantic expression between the process knowledge graph and the entity model is realized. Finally, by obtaining implicit semantics based on case-based reasoning and checking the similarity of the matching results, the case knowledge reuse is achieved, to achieve rapid design of the process. This method provides reliable technical support for the design of ship component assembly and welding process, greatly shortens the design cycle, and improves the working efficiency. In addition, a case study of the test model is carried out to verify the feasibility and efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document