The Effect of Internal Pressure on the Buckling Stress of Thin-Walled Circular Cylinders Under Combined Axial Compression and Torsion

1958 ◽  
Vol 25 (2) ◽  
pp. 142-143 ◽  
Author(s):  
Leonard A. Harris ◽  
Herbert S. Suer ◽  
William T. Skene
2006 ◽  
Vol 06 (04) ◽  
pp. 457-474 ◽  
Author(s):  
M. A. BRADFORD ◽  
A. ROUFEGARINEJAD ◽  
Z. VRCELJ

Circular thin-walled elastic tubes under concentric axial loading usually fail by shell buckling, and in practical design procedures the buckling load can be determined by modifying the local buckling stress to account empirically for the imperfection sensitive response that is typical in Donnell shell theory. While the local buckling stress of a hollow thin-walled tube under concentric axial compression has a solution in closed form, that of a thin-walled circular tube with an elastic infill, which restrains the local buckling mode, has received far less attention. This paper addresses the local buckling of a tubular member subjected to axial compression, and formulates an energy-based technique for determining the local buckling stress as a function of the stiffness of the elastic infill by recourse to a transcendental equation. This simple energy formulation, with one degree of buckling freedom, shows that the elastic local buckling stress increases from 1 to [Formula: see text] times that of a hollow tube as the stiffness of the elastic infill increases from zero to infinity; the latter case being typical of that of a concrete-filled steel tube. The energy formulation is then recast into a multi-degree of freedom matrix stiffness format, in which the function for the buckling mode is a Fourier representation satisfying, a priori, the necessary kinematic condition that the buckling deformation vanishes at the point where it enters the elastic medium. The solution is shown to converge rapidly, and demonstrates that the simple transcendental formulation provides a sufficiently accurate representation of the buckling problem.


Author(s):  
Ali Limam ◽  
Ce´dric Mathon

This study deals with the buckling of thin cylindrical shells submitted to combined loads such internal pressure, bending and axial compression. A large experimental investigation is conducted and some explanations on the behavior of such loaded structures and on the influence of distinct parameters are gauged. The parametrical studies show the stabilising effect of low internal pressure and a drop of the load capacity for high internal pressure due to the plasticity effect. Specific recommendations are finally established for the design.


Aerospace ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 346
Author(s):  
Do-Young Kim ◽  
Chang-Hoon Sim ◽  
Jae-Sang Park ◽  
Joon-Tae Yoo ◽  
Young-Ha Yoon ◽  
...  

The internal pressure of a thin-walled cylindrical structure under axial compression may improve the buckling stability by relieving loads and reducing initial imperfections. In this study, the effect of internal pressure on the buckling knockdown factor is investigated for axially compressed thin-walled composite cylinders with different shell thickness ratios and slenderness ratios. Various shell thickness ratios and slenderness ratios are considered when the buckling knockdown factor is derived for the thin-walled composite cylinders under both axial compression and internal pressure. Nonlinear post-buckling analyses are conducted using the nonlinear finite element analysis program, ABAQUS. The single perturbation load approach is used to represent the geometric initial imperfection of thin-walled composite cylinders. For cases with the axial compressive force only, the buckling knockdown factor decreases as the shell thickness ratio increases or as the slenderness ratio increases. When the internal pressure is considered simultaneously with the axial compressive force, the buckling knockdown factor decreases as the slenderness ratio increases but increases as the shell thickness ratio increases. The buckling knockdown factors considering the internal pressure and axial compressions are higher by 2.67% to 38.98% compared with the knockdown factors considering the axial compressive force only. The results show the significant effect of the internal pressure, particularly for thinner composite cylinders, and that the buckling knockdown factors may be enhanced for all the shell thickness ratios and slenderness ratios considered in this study when the internal pressure is applied to the cylinder.


1961 ◽  
Vol 12 (2) ◽  
pp. 150-164
Author(s):  
M. Holmes

SummaryThe paper describes compression tests on eight thin-walled cylinders of 3 ft. diameter and 0·035 in. wall thickness made of aluminium alloy plate. The lengths of the cylinders were either 6 ft. or 9 ft. Three of the cylinders were tested under axial compression up to buckling failure, and the initial buckling load, failing load and mode of buckling were observed. A further three cylinders were similarly tested, but these cylinders were subjected to internal pressure before applying the compressive load. The internal pressure had a twofold strengthening effect on these cylinders. Firstly, it induced a tensile pre-stress along the axis of the cylinder and, secondly, it resulted in the value of the compressive stress at which buckling occurred being greater than the buckling stress value for the unpressurised cylinders. The six cylinders were tested in a manner which allowed the end face of each cylinder to rotate about a diametral axis. A parallel platen device was used in testing the last two cylinders (in an unpressurised condition) which restrained rotation of the end faces of the cylinders. These tests enabled the effect of end restraint to be studied, and also enabled measurements of load-carrying capacity at large axial deflections to be made. The initial buckling loads, failing loads and modes of buckling observed in the tests were compared with existing large deflection theory.


1958 ◽  
Vol 25 (5) ◽  
pp. 281-287 ◽  
Author(s):  
HERBERT S. SUER ◽  
LEONARD A. HARRIS ◽  
WILLIAM T. SKENE ◽  
ROLAND J. BENJAMIN

Sign in / Sign up

Export Citation Format

Share Document