scholarly journals Comparative Kinematic and Electromyographic Assessment of Clinician- and Device-Assisted Sit-to-Stand Transfers in Patients With Stroke

2013 ◽  
Vol 93 (10) ◽  
pp. 1331-1341 ◽  
Author(s):  
Judith M. Burnfield ◽  
Bernadette McCrory ◽  
Yu Shu ◽  
Thad W. Buster ◽  
Adam P. Taylor ◽  
...  

Background Workplace injuries from patient handling are prevalent. With the adoption of no-lift policies, sit-to-stand transfer devices have emerged as one tool to combat injuries. However, the therapeutic value associated with sit-to-stand transfers with the use of an assistive apparatus cannot be determined due to a lack of evidence-based data. Objective The aim of this study was to compare clinician-assisted, device-assisted, and the combination of clinician- and device-assisted sit-to-stand transfers in individuals who recently had a stroke. Design This cross-sectional, controlled laboratory study used a repeated-measures design. Methods The duration, joint kinematics, and muscle activity of 4 sit-to-stand transfer conditions were compared for 10 patients with stroke. Each patient performed 4 randomized sit-to-stand transfer conditions: clinician-assisted, device-assisted with no patient effort, device-assisted with the patient’s best effort, and device- and clinician-assisted. Results Device-assisted transfers took nearly twice as long as clinician-assisted transfers. Hip and knee joint movement patterns were similar across all conditions. Forward trunk flexion was lacking and ankle motion was restrained during device-assisted transfers. Encouragement and guidance from the clinician during device-assisted transfers led to increased lower extremity muscle activation levels. Limitations One lifting device and one clinician were evaluated. Clinician effort could not be controlled. Conclusions Lack of forward trunk flexion and restrained ankle movement during device-assisted transfers may dissuade clinicians from selecting this device for use as a dedicated rehabilitation tool. However, with clinician encouragement, muscle activation increased, which suggests that it is possible to safely practice transfers while challenging key leg muscles essential for standing. Future sit-to-stand devices should promote safety for the patient and clinician and encourage a movement pattern that more closely mimics normal sit-to-stand biomechanics.

Author(s):  
Harish Chander ◽  
John C. Garner ◽  
Chip Wade ◽  
Adam C. Knight

Muscle activity from the slipping leg have been previously used to analyze slip induced falls. However, the impact of casual alternative footwear on slipping leg muscle activity when exposed to slippery environments is still unknown. The purpose of the study was to analyze the impact of alternative footwear (crocs (CC) and flip-flops (FF)) compared to slip-resistant footwear (LT) on lower extremity muscle activity when exposed to dry gait (NG), unexpected (US), alert (AS), and expected slips (ES). Eighteen healthy males (age: 22.3 ± 2.2 years; height: 177.7 ± 6.9 cm; weight: 79.3 ± 7.6 kg) completed the study in a repeated measures design in three footwear sessions separated by 48 h. Electromyography (EMG) muscle activity from four muscles of the lead/slipping leg was measured during the stance phase of the gait-slip trials. A 3 (footwear) × 4 (gait-slip trials) repeated measures analysis of variance was used to analyze EMG dependent variables mean, peak, and percent of maximal voluntary contraction. Greater lower extremity muscle activation during the stance phase was seen in US and AS conditions compared to NG and ES. In addition, footwear differences were seen for the alternative footwear (CC and FF) during US and AS, while the low top slip resistant shoe had no differences across all gait trials, suggesting it as the most efficient footwear of choice, especially when maneuvering slippery flooring conditions, either with or without the knowledge of an impending slip.


2017 ◽  
Vol 26 (1) ◽  
pp. 78-93 ◽  
Author(s):  
Jihong Park ◽  
W. Matt Denning ◽  
Jordan D. Pitt ◽  
Devin Francom ◽  
J. Ty Hopkins ◽  
...  

Context:Although knee pain is common, some facets of this pain are unclear. The independent effects (ie, independent from other knee injury or pathology) of knee pain on neural activation of lower-extremity muscles during landing and jumping have not been observed.Objective:To investigate the independent effects of knee pain on lower-extremity muscle (gastrocnemius, vastus medialis, medial hamstrings, gluteus medius, and gluteus maximus) activation amplitude during landing and jumping, performed at 2 different intensities.Design:Laboratory-based, pretest, posttest, repeated-measures design, where all subjects performed both data-collection sessions.Methods:Thirteen able-bodied subjects performed 2 different land and jump tasks (forward and lateral) under 2 different conditions (control and pain), at 2 different intensities (high and low). For the pain condition, experimental knee pain was induced via a hypertonic saline injection into the right infrapatellar fat pad. Functional linear models were used to evaluate the influence of experimental knee pain on muscle-activation amplitude throughout the 2 land and jump tasks.Results:Experimental knee pain independently altered activation for all of the observed muscles during various parts of the 2 different land and jump tasks. These activation alterations were not consistently influenced by task intensity.Conclusion:Experimental knee pain alters activation amplitude of various lower-extremity muscles during landing and jumping. The nature of the alteration varies between muscles, intensities, and phases of the movement (ie, landing and jumping). Generally, experimental knee pain inhibits the gastrocnemius, medial hamstring, and gluteus medius during landing while independently increasing activation of the same muscles during jumping.


Biomechanics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 202-213
Author(s):  
Harish Chander ◽  
Sachini N. K. Kodithuwakku Arachchige ◽  
Alana J. Turner ◽  
Reuben F. Burch V ◽  
Adam C. Knight ◽  
...  

Background: Occupational footwear and a prolonged duration of walking have been previously reported to play a role in maintaining postural stability. The purpose of this paper was to analyze the impact of three types of occupational footwear: the steel-toed work boot (ST), the tactical work boot (TB), and the low-top work shoe (LT) on previously unreported lower extremity muscle activity during postural stability tasks. Methods: Electromyography (EMG) muscle activity was measured from four lower extremity muscles (vastus medialis (VM), medial hamstrings (MH), tibialis anterior (TA), and medial gastrocnemius (MG) during maximal voluntary isometric contractions (MVIC) and during a sensory organization test (SOT) every 30 min over a 4 h simulated workload while wearing ST, TB, and LT footwear. The mean MVIC and the mean and percentage MVIC during each SOT condition from each muscle was analyzed individually using a repeated measures ANOVA at an alpha level of 0.05. Results: Significant differences (p < 0.05) were found for maximal exertions, but this was limited to only the time main effect. No significant differences existed for EMG measures during the SOT. Conclusion: The findings suggest that occupational footwear type does not influence lower extremity muscle activity during both MVIC and SOT. Significantly lower muscle activity during maximal exertions over the course of the 4 h workload was evident, which can be attributed to localized muscular fatigue, but this was not sufficient to impact muscle activity during postural stability tasks.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0242963
Author(s):  
Peter M. Wayne ◽  
Brian J. Gow ◽  
Fengzhen Hou ◽  
Yan Ma ◽  
Jeffrey M. Hausdorff ◽  
...  

Background Tai Chi (TC) mind-body exercise has been shown to reduce falls and improve balance and gait, however, few studies have evaluated the role of lower extremity muscle activation patterns in the observed benefits of TC on mobility. Purpose To perform an exploratory analysis of the association between TC training and levels of lower extremity muscle co-contraction in healthy adults during walking under single-task (ST) and cognitive dual-task (DT) conditions. Methods Surface electromyography of the anterior tibialis and lateral gastrocnemius muscles was recorded during 90 sec trials of overground ST (walking normally) and DT (walking with verbalized serial subtractions) walking. A mean co-contraction index (CCI), across all strides, was calculated based on the percentage of total muscle activity when antagonist muscles were simultaneously activated. A hybrid study design investigated long-term effects of TC via a cross-sectional comparison of 27 TC experts and 60 age-matched TC-naïve older adults. A longitudinal comparison assessed the shorter-term effects of TC; TC-naïve participants were randomly allocated to either 6 months of TC training or to usual care. Results Across all participants at baseline, greater CCI was correlated with slower gait speed under DT (β(95% CI) = -26.1(-48.6, -3.7)) but not ST (β(95% CI) = -15.4(-38.2, 7.4)) walking. Linear models adjusting for age, gender, BMI and other factors that differed at baseline indicated that TC experts exhibited lower CCI compared to TC naives under DT, but not ST conditions (ST: mean difference (95% CI) = -7.1(-15.2, 0.97); DT: mean difference (95% CI) = -10.1(-18.1, -2.4)). No differences were observed in CCI for TC-naive adults randomly assigned to 6 months of TC vs. usual care. Conclusion Lower extremity muscle co-contraction may play a role in the observed benefit of longer-term TC training on gait and postural control. Longer-duration and adequately powered randomized trials are needed to evaluate the effect of TC on neuromuscular coordination and its impact on postural control. Trial registration The randomized trial component of this study was registered at ClinicalTrials.gov (NCT01340365).


2020 ◽  
Vol 71 ◽  
pp. 152-159
Author(s):  
Adriana Neves dos Santos ◽  
Gisele Moreira Pena ◽  
Evelyn Maria Guilherme ◽  
Nelci Adriana Cicuto Ferreira Rocha

2019 ◽  
Vol 28 (4) ◽  
pp. 318-324
Author(s):  
Benita Olivier ◽  
Samantha-Lynn Quinn ◽  
Natalie Benjamin ◽  
Andrew Craig Green ◽  
Jessica Chiu ◽  
...  

Context: The single-leg squat task is often used as a rehabilitative exercise or as a screening tool for the functional movement of the lower limb. Objective: To establish the effect of 3 different positions of the nonstance leg on 3-dimensional kinematics, muscle activity, and center of mass displacement during a single-leg squat. Design: Within-subjects, repeated-measures design. Setting: Movement analysis laboratory. Participants: A total of 10 participants, aged 28.2 (4.42) years performed 3 squats to 60° of knee flexion with the nonstance (1) hip at 90° flexion and knee at 90° flexion, (2) hip at 30° flexion with the knee fully extended, or (3) hip in neutral/0° and the knee flexed to 90°. Main Outcome Measures: Trunk, hip, knee and ankle joint angles, and center of mass displacement were recorded with inertial sensors while muscle activity was captured through wireless electromyography. Results: Most trunk flexion (21.38° [18.43°]) occurred with the nonstance hip at 90° and most flexion of the stance hip (23.10° [6.60°]) occurred with the nonstance hip at 0°. Biceps femoris activity in the 90° squat was 40% more than in the 0° squat, whereas rectus femoris activity in the 0° squat was 29% more than in the 90° squat. Conclusion: The position of the nonstance limb should be standardized when the single-leg squat is used for assessment and be adapted to the aim when used in rehabilitation.


Author(s):  
Eddy Saad ◽  
Karl Semaan ◽  
Georges Kawkabani ◽  
Abir Massaad ◽  
Renee Maria Salibv ◽  
...  

Adults with spinal deformity (ASD) are known to have spinal malalignment affecting their quality of life and daily life activities. While walking kinematics were shown to be altered in ASD, other functional activities are yet to be evaluated such as sitting and standing, which are essential for patients’ autonomy and quality of life perception. In this cross-sectional study, 93 ASD subjects (50 ± 20 years; 71 F) age and sex matched to 31 controls (45 ± 15 years; 18 F) underwent biplanar radiographic imaging with subsequent calculation of standing radiographic spinopelvic parameters. All subjects filled HRQOL questionnaires such as SF36 and ODI. ASD were further divided into 34 ASD-sag (with PT &gt; 25° and/or SVA &gt;5 cm and/or PI-LL &gt;10°), 32 ASD-hyperTK (with only TK &gt;60°), and 27 ASD-front (with only frontal malalignment: Cobb &gt;20°). All subjects underwent 3D motion analysis during the sit-to-stand and stand-to-sit movements. The range of motion (ROM) and mean values of pelvis, lower limbs, thorax, head, and spinal segments were calculated on the kinematic waveforms. Kinematics were compared between groups and correlations to radiographic and HRQOL scores were computed. During sit-to-stand and stand-to-sit movements, ASD-sag had decreased pelvic anteversion (12.2 vs 15.2°), hip flexion (53.0 vs 62.2°), sagittal mobility in knees (87.1 vs 93.9°), and lumbar mobility (L1L3-L3L5: −9.1 vs −6.8°, all p &lt; 0.05) compared with controls. ASD-hyperTK showed increased dynamic lordosis (L1L3–L3L5: −9.1 vs −6.8°), segmental thoracic kyphosis (T2T10–T10L1: 32.0 vs 17.2°, C7T2–T2T10: 30.4 vs 17.7°), and thoracolumbar extension (T10L1–L1L3: −12.4 vs −5.5°, all p &lt; 0.05) compared with controls. They also had increased mobility at the thoracolumbar and upper-thoracic spine. Both ASD-sag and ASD-hyperTK maintained a flexed trunk, an extended head along with an increased trunk and head sagittal ROM. Kinematic alterations were correlated to radiographic parameters and HRQOL scores. Even after controlling for demographic factors, dynamic trunk flexion was determined by TK and PI-LL mismatch (adj. R2 = 0.44). Lumbar sagittal ROM was determined by PI-LL mismatch (adj. R2 = 0.13). In conclusion, the type of spinal deformity in ASD seems to determine the strategy used for sitting and standing. Future studies should evaluate whether surgical correction of the deformity could restore sitting and standing kinematics and ultimately improve quality of life.


Author(s):  
Charmaine Pearl Da Cunha ◽  
Pratiksha Tilak Rao ◽  
Suruliraj Karthikbabu

Abstract Introduction The aim of this systematic review is to present the existing literature on the clinical motor, and non-motor factors contributing to sit-to-stand transfer in individuals with Parkinson's disease. Data synthesis Five databases (PubMed, PEDro, Cochrane, SCOPUS, and Ovid) were searched for literature on the contributing factors to sit-to-stand performance in Parkinson's disease. A quality check of these observational studies was done using the 'strengthening the reporting of observational studies in epidemiology' (STROBE) statement and the tool of the 'National Heart, Lung, and Blood Institute' (NHLBI). Descriptive and quantitative data were extracted and compiled, and a meta-analysis was performed to compute the standardised mean difference. Results Thirteen studies were selected; a majority of them provided a high-to-moderate level of evidence. Ten were cross-sectional, while the other three were case–control studies. Collectively, individuals with Parkinson's disease had a prolonged transfer time than those of age-matched healthy peers, particularly from peak horizontal velocity phase to seat-off phase, implying bradykinesia. A reduction in peak and rate to peak joint torques was also related to the decreased pace and stability of the sit-to-stand movement in individuals with Parkinson's disease. Additionally, they demonstrated exaggerated trunk flexion as a postural stabilisation strategy, allowing them to maintain and manoeuvre the relative positions of their centre of mass through the transitional phase of the transfer. Conclusion As per the existing literature, an alteration in strength, overall body bradykinesia, balance, posture, as well as cognition may result in an impaired sit-to-stand transfer in individuals with Parkinson's disease.


Author(s):  
Mattie E. Pontiff ◽  
Li Li ◽  
Noelle G. Moreau

Background: Lower extremity muscle power is critical for daily activities and athletic performance in clinical populations. Objective: The purpose of this study was to determine the reliability and validity of 3 clinically feasible methods to measure lower extremity muscle power during a leg press. Methods: Ten of 26 subjects performed 2 sessions of 5 submaximal leg presses separated by 3-7 days in this repeated-measures cross-sectional design; the remaining performed 1 test session. Power was calculated independently for each method [simple video, linear position transducer, and accelerometer] and compared to the reference force plate. Test-retest reliability was evaluated using intraclass correlation coefficients (ICC). Pearson’s correlation coefficient (r), Bland-Altman plots with 95% limits of agreement (LOA), and mean bias percentages (%) were used to determine relative and absolute validity. Results: Power measures were reliable for all methods (ICC=.97-.99). All were highly correlated with the force plate (r=.96-.98). Mean bias was -0.8% (LOA: -16.57% to 14.98%) (video), -13.21% (LOA: -23.81% to -2.61%) (position transducer) compared to the force plate. Proportional bias was observed for accelerometry. Conclusion: All methods were reliable and highly correlated with the force plate. Only the video and position transducer demonstrated absolute validity. The position transducer was the most feasible method because of its simplicity and accuracy in measuring power.


Sign in / Sign up

Export Citation Format

Share Document