Selection of Passive Inflow Control Devices Based on Dynamic Weight Fuzzy Evaluation

2014 ◽  
Author(s):  
Quanshu Zeng ◽  
Zhiming Wang ◽  
Xiaoqiu Wang ◽  
Yiwei Li ◽  
Weilin Zou ◽  
...  
2014 ◽  
Author(s):  
Quanshu Zeng ◽  
Zhiming Wang ◽  
Xiaoqiu Wang ◽  
Yiwei Li ◽  
Weilin Zou ◽  
...  

Author(s):  
Q. Z. Yang ◽  
B. Song

This paper presents a hierarchical fuzzy evaluation approach to product lifecycle sustainability assessment at conceptual design stages. The purpose is to advocate the emerging use of lifecycle engineering methods in support of evaluation and selection of design alternatives for sustainable product development. A fuzzy evaluation model is developed with a hierarchical criteria structure to represent different sustainability considerations in the technical, economic and environmental dimensions. Using the imprecise and uncertain early-stage product information, each design option is assessed by the model with respect to the hierarchical evaluation criteria. Lifecycle engineering methods, such as lifecycle assessment and lifecycle costing analysis, are applied to the generation of the evaluation criteria. This would provide designers with a more complete lifecycle view about the product’s sustainability potentials to support decision-making in evaluation and selection of conceptual designs. The proposed approach has been implemented in a sustainable design decision-support software prototype. Illustrative examples are discussed in the paper to demonstrate the use of the approach and the prototype in conceptual design selection of a consumer product.


Author(s):  
H. Gene Hawkins ◽  
Kay Fitzpatrick ◽  
Marcus A. Brewer

The 2009 United States Manual on Uniform Traffic Control Devices (MUTCD) includes guidance for the use of various types of traffic control at unsignalized intersections. Despite changes and advances in traffic engineering in recent decades, the MUTCD content related to selection of traffic control in Part 2B has seen only minor changes since 1971. The types of unsignalized traffic control addressed in the current research included no control, yield control, two-way stop control, and all-way stop control. The research team developed recommendations using information available from reviews of existing literature, policies, guidelines, and findings from an economic analysis along with the engineering judgment of the research team and panel. The researchers then developed recommended language for the next edition of the MUTCD for unsignalized intersections. This includes consideration of high-speed (rural) and low-speed (urban) conditions along with the number of legs at the intersection. Because the number of expected crashes at an intersection is a function of the number of legs, the decision on appropriate traffic control should also be sensitive to the number of legs present. The proposed language includes introductory general considerations, discusses alternatives to changing right-of-way control, and steps through the various forms of unsignalized control from least restrictive to most restrictive, beginning with no control and concluding with all-way stop control.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 743 ◽  
Author(s):  
Slavko Vesković ◽  
Željko Stević ◽  
Darjan Karabašević ◽  
Snježana Rajilić ◽  
Sanjin Milinković ◽  
...  

The analysis of operations of the passenger traffic operator in the Republic of Srpska (RS) showed that the volume of passenger transport has, for the last fifteen years, been in constant decline. It is of particular importance that the operator has, year after year, recorded a negative balance of business. The way out of the current unfavorable situation in the sector of passenger traffic is based on the application of Public Service Obligation (PSO) based on the Regulation 1370/2007. In order to solve the problems, seven realistically possible variants have been identified. This paper defines the criteria for selecting the best variant, as well as a new integrated fuzzy model for the selection of the best variant that will enable the operator to make a profit. To define the weights of criteria in this paper, we have used the fuzzy PIvot Pairwise RElative Criteria Importance Assessment (F-PIPRECIA) method, while for ranking and selection of the best variant, we have used the Fuzzy Evaluation based on Distance from Average Solution (F-EDAS) method. Results show that the seventh variant: “Increase in revenue from ticket sales and PSO services and reduction in costs“ is the best solution in current conditions. Validation tests are performed with different scenarios and approaches and show that the model is stable. A validity test was created consisting of variations in the significance of model input parameters, testing of reverse rank, applying the fuzzy Measurement Alternatives and Ranking according to the COmpromise Solution (F-MARCOS), fuzzy Simple Additive Weighing (F-SAW) method, and fuzzy Technique for Order of Preference by Similarity to Ideal Solution (F-TOPSIS). As a part of the validation tests, Spearman’s coefficient of correlation (SCC) in some scenarios is performed and weights of the criteria have been obtained using the Fuzzy Analytic Hierarchy Process (F-AHP) and Full Consistency Method (FUCOM).


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Carlos Sepúlveda ◽  
Oscar Montiel ◽  
José M. Cornejo Bravo ◽  
Roberto Sepúlveda

Population pharmacokinetic (PopPK) models allow researchers to predict and analyze drug behavior in a population of individuals and to quantify the different sources of variability among these individuals. In the development of PopPK models, the most frequently used method is the nonlinear mixed effect model (NLME). However, once the PopPK model has been developed, it is necessary to determine if the selected model is the best one of the developed models during the population pharmacokinetic study, and this sometimes becomes a multiple criteria decision making (MCDM) problem, and frequently, researchers use statistical evaluation criteria to choose the final PopPK model. The used evaluation criteria mentioned above entail big problems since the selection of the best model becomes susceptible to the human error mainly by misinterpretation of the results. To solve the previous problems, we introduce the development of a software robot that can automate the task of selecting the best PopPK model considering the knowledge of human expertise. The software robot is a fuzzy expert system that provides a method to systematically perform evaluations on a set of candidate PopPK models of commonly used statistical criteria. The presented results strengthen our hypothesis that the software robot can be successfully used to evaluate PopPK models ensuring the selection of the best PopPK model.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6372
Author(s):  
Shih-Hung Yang ◽  
Jyun-We Huang ◽  
Chun-Jui Huang ◽  
Po-Hsiung Chiu ◽  
Hsin-Yi Lai ◽  
...  

Intracortical brain–computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via their brain signals. Recurrent neural networks (RNNs) are widely used as neural decoders because they can learn neural response dynamics from continuous neural activity. Nevertheless, excessively long or short input neural activity for an RNN may decrease its decoding performance. Based on the temporal attention module exploiting relations in features over time, we propose a temporal attention-aware timestep selection (TTS) method that improves the interpretability of the salience of each timestep in an input neural activity. Furthermore, TTS determines the appropriate input neural activity length for accurate neural decoding. Experimental results show that the proposed TTS efficiently selects 28 essential timesteps for RNN-based neural decoders, outperforming state-of-the-art neural decoders on two nonhuman primate datasets (R2=0.76±0.05 for monkey Indy and CC=0.91±0.01 for monkey N). In addition, it reduces the computation time for offline training (reducing 5–12%) and online prediction (reducing 16–18%). When visualizing the attention mechanism in TTS, the preparatory neural activity is consecutively highlighted during arm movement, and the most recent neural activity is highlighted during the resting state in nonhuman primates. Selecting only a few essential timesteps for an RNN-based neural decoder provides sufficient decoding performance and requires only a short computation time.


Sign in / Sign up

Export Citation Format

Share Document