Quantifying Carbonate Heterogeneities that Impact Flow in Reservoirs: Lessons Learned from the Central Luconia Gas Fields, Malaysia

2016 ◽  
Author(s):  
G. M. Warrlich ◽  
A. Ryba ◽  
E. Adams ◽  
T. Tam ◽  
E. C. Chiew ◽  
...  
2016 ◽  
Author(s):  
G. M. Warrlich ◽  
A. Ryba ◽  
E. Adams ◽  
T. Tam ◽  
E. C. Chiew ◽  
...  

2015 ◽  
Author(s):  
R.N.. N. Naidu ◽  
E.A.. A. Guevara ◽  
A.J.. J. Twynam ◽  
J.. Rueda ◽  
W.. Dawson ◽  
...  

Abstract Hydraulic fracturing is a commonly used completion approach for extracting hydrocarbon resources from formations, particularly in those formations of very low permeability. As part of this process the use of Diagnostic Fracture Injection Tests (DFIT) can provide valuable information. When the measured pressures in such tests are outside the expected range for a given formation, a number of possibilities and questions will arise. Such considerations may include: What caused such inflated pressures? What is the in-situ stress state? Was there a mechanical or operational problem? Was the test procedure or the test equipment at fault? What else can explain the abnormal behaviour? While there may not be simple answers to all of these questions, such an experience can lead to a technically inaccurate conclusion based on inadequate analysis. A recently completed project faced just such a challenge, initially resulting in poor hydraulic fracturing efficiency and a requirement to understand the root causes. In support of this, a thorough analysis involving a multi-disciplinary review team from several technical areas, including petrophysics, rock/geo-mechanics, fluids testing/engineering, completions engineering, hydraulic fracture design and petroleum engineering, was undertaken. This paper describes the evolution of this study, the work performed, the results and conclusions from the analysis. The key factors involved in planning a successful DFIT are highlighted with a general template and a work process for future testing provided. The importance of appreciating the impact of the drilling and completion fluids composition, their properties and their compatibility with the formation fluids are addressed. The overall process and technical approach from this case study in tight gas fields, will have applicability across similar fields and the lessons learned could help unlock those reserves that are initially deemed technically or even commercially unattractive due to abnormal or unexpected behaviour measured during a DFIT operation.


Author(s):  
F. Sajjad

Tubular engineering is essential for production operations, especially in mature oil and gas fields. The complex interaction between hydrocarbon and non-hydrocarbon components will eventually result in tubulars deteriorating into poor condition and performance. 1500 well examples are located in field X, Indonesia, in which 70% of them have been producing for more than 30 years, indicating the existence of tubular thinning and deformation. The degradation is slowly developed until severe alterations are observed on the tubing body. The situation from the aforementioned wells is complicated since tubular deformation inhibits the flow as well as increasing the risk of wellbore collapse and complications during sidetracking, infill drilling, workover, and other production enhancement measures. These wells are subjected to costly remedial measures and often result in unsuccessful recovery efforts. The authors present the degree of tubular degradation and its effect to overall field performance and the possibility of tubular failure. Current field practices do not encourage a thorough tubular assessment during early life of the wells, which create complex problems at a later stage. Eventually, the study indicates that proper planning and preventive actions should be performed gradually before tubular degradation becomes severe. This paper presents a field experience-based model that is useful in developing new areas from the perspective of well and facilities integrity, so that the degradation-related issues can be recognized earlier. We used multiple case studies with actual field data to identify the dominant mechanism for tubular degradation. The case study presented a model that is capable to describe the extent of tubular degradation in offshore, mature wells that are prone to stress from its surroundings. Lessons learned from these failures encourages us to conduct a comprehensive study on tubular degradation. It is performed to model the incorporation of multiple degradation mechanisms on tubular performance.


2021 ◽  
Author(s):  
Parimal A. Patil ◽  
Prasanna Chidambaram ◽  
M Syafeeq Bin Ebining Amir ◽  
Pankaj K. Tiwari ◽  
Debasis P. Das ◽  
...  

Abstract Underground storage of CO2 in depleted gas reservoirs is a greenhouse gas reduction technique that significantly reduces CO2 released into the atmosphere. Three major depleted gas reservoirs in Central Luconia gas field, located offshore Sarawak, possess good geological characteristics needed to ensure long-term security for CO2 stored deep underground. Long-term integrity of all the wells drilled in these gas fields must be ensured in order to successfully keep the CO2 stored for decades/centuries into the future. Well integrity is often defined as the ability to contain fluids without significant leakage through the project lifecycle. In order to analyze the risk associated with all 38 drilled wells, that includes 11 plugged and abandoned (P&A) wells and 27 active wells, probabilistic risk assessment approach has been developed. This approach uses various leakage scenarios, that includes features, events, and processes (FEP). A P&A well in a depleted reservoir is a very complex system in order to assess the loss of containment as several scenarios and parameters associated to those scenarios are difficult to estimate. Based on the available data of P&A wells, a well has been selected for this study. All the barriers in the example well have been identified and properties associated with those barriers are defined in order to estimate the possible leakage pathways through the identified barriers within that well. Detailed mathematical models are provided for estimating CO2 leakage from reservoir to the surface through all possible leakage pathways. Sensitivity analysis has been carried out for critical parameters such as cement permeability, and length of cement plug, in order to assess the containment ability of that well and understand its impact on overall well integrity. Sensitivity analysis shows that permeability of the cement in the annulus, and length of cement plug in the wellbore along with pressure differential can be used as critical set of parameters to assess the risk associated with all wells in these three fields. Well integrity is defined as the ability of the composite system (cemented casings string) in the well to contain fluids without significant leakage from underground reservoir up to surface. It has been recognized as a key performance factor determining the viability of any CCS project. This is the first attempt in assessing Well Integrity risk related to CO2 storage in Central Luconia Gas Fields in Sarawak. The wells have been looked individually in order to make sure that integrity is maintained, and CO2 is contained underground for years to come.


Georesursy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 10-18 ◽  
Author(s):  
Tako Koning

Basement rocks are important oil and gas reservoirs in a number of basins in the world. The basement oil and gas play has intensified in the past decade with significant basement discoveries. This paper provides a technical review of select basement oil and gas fields in Asia, Africa and the Americas. “Best practices” for exploring and developing basement fields are reviewed. Failures are also considered since basement reservoirs can be very complicated and unpredictable. Preference scale for basement reservoir rock types is presented. The opinion of this author is that the best rock types are fractured quartzites or granites since they are brittle and thus fracture optimally. Based on international experience, recommendations on the study of crystalline basement for oil and gas and the development of deposits in it are given.


2021 ◽  
Author(s):  
Edo Pratama

Abstract Many oil and gas operators have challenges in deepwater turbidite gas asset's reservoir management plan (RMP) readiness due to lack of experience and very limited analog field data. The objective of this article is to demonstrate how data analytics workflow, comprising of data mining and machine learning-based global deepwater turbidite gas field benchmarking and lessons learned, to identify field performance and mitigate subsurface challenges in developing and managing deepwater turbidite gas assets. To mine turbidite field data from around the world, a customized R script was constructed using optical character recognition, regular expression (regex), rule-based logic to extract subsurface and surface data attributes from unstructured data sources. All extracted contents were transformed into a properly structured query language (SQL) database relational format for the cleansing process. Having established the turbidite assets repository, exploratory data analysis (EDA) was then employed to discover insight datasets. To analyze the field performance, the number of wells needed to deplete the field was identified using support vector regression, subsequently, K-means clustering was used to classify the reservoirs productivity. The results of field benchmarking analysis from EDA are deployed in a fit-for-purpose dashboard application, which provides an elegant and powerful framework for data management and analytics purposes. The analytic dashboard which was developed to visualize EDA findings will be presented in this article. The productivity of deepwater turbidite gas reservoirs has been classified based on the maximum gas flow rate and estimated ultimate recovery per well. This result help in identifying the high-rate, high-ultimate-recovery (HRHU) reservoirs of a deepwater turbidite gas field. The regex pattern for subsurface challenges specifically as related to reservoir uncertainties and associated risks, including operational challenges in developing and managing deepwater turbidite gas fields were identified through word cloud recognition. Key subsurface challenges were then categorized and statistically ranked, finally, a decomposition tree was used to identify the issues, impacts, and mitigation plan for dealing with identified risks based on best practices from a global project point of view. Deployment of this novel workflow provides insight for better decision-making and can be a prudent complementary tool for de-risking subsurface uncertainties in developing and managing deepwater turbidite gas assets. The findings from this study can be used to develop the framework that captures current best-practices in the formulation and execution of a RMP including monitoring and benchmark of asset performance in deepwater turbidite gas fields.


2020 ◽  
Vol 5 (1) ◽  
pp. 88-96
Author(s):  
Mary R. T. Kennedy

Purpose The purpose of this clinical focus article is to provide speech-language pathologists with a brief update of the evidence that provides possible explanations for our experiences while coaching college students with traumatic brain injury (TBI). Method The narrative text provides readers with lessons we learned as speech-language pathologists functioning as cognitive coaches to college students with TBI. This is not meant to be an exhaustive list, but rather to consider the recent scientific evidence that will help our understanding of how best to coach these college students. Conclusion Four lessons are described. Lesson 1 focuses on the value of self-reported responses to surveys, questionnaires, and interviews. Lesson 2 addresses the use of immediate/proximal goals as leverage for students to update their sense of self and how their abilities and disabilities may alter their more distal goals. Lesson 3 reminds us that teamwork is necessary to address the complex issues facing these students, which include their developmental stage, the sudden onset of trauma to the brain, and having to navigate going to college with a TBI. Lesson 4 focuses on the need for college students with TBI to learn how to self-advocate with instructors, family, and peers.


2020 ◽  
Vol 29 (3S) ◽  
pp. 638-647 ◽  
Author(s):  
Janine F. J. Meijerink ◽  
Marieke Pronk ◽  
Sophia E. Kramer

Purpose The SUpport PRogram (SUPR) study was carried out in the context of a private academic partnership and is the first study to evaluate the long-term effects of a communication program (SUPR) for older hearing aid users and their communication partners on a large scale in a hearing aid dispensing setting. The purpose of this research note is to reflect on the lessons that we learned during the different development, implementation, and evaluation phases of the SUPR project. Procedure This research note describes the procedures that were followed during the different phases of the SUPR project and provides a critical discussion to describe the strengths and weaknesses of the approach taken. Conclusion This research note might provide researchers and intervention developers with useful insights as to how aural rehabilitation interventions, such as the SUPR, can be developed by incorporating the needs of the different stakeholders, evaluated by using a robust research design (including a large sample size and a longer term follow-up assessment), and implemented widely by collaborating with a private partner (hearing aid dispensing practice chain).


Sign in / Sign up

Export Citation Format

Share Document