Anisotropic Geomechanical Rock Properties Modelling for Unconventional Shale Gas Formation

2021 ◽  
Author(s):  
Ikhwanul Hafizi Musa ◽  
Chee Phuat Tan ◽  
Junghun Leem ◽  
Iftikhar Altaf ◽  
Zahidah Md Zain ◽  
...  

Abstract Geomechanical rock properties correlations and modeling approach for conventional reservoirs are inappropriate and unsuitable for unconventional shale gas reservoirs where the shale formation is strong and has very low porosity. These correlations are critical in the development of 1D and 3D geomechanical models which are used for various field applications including drilling optimization, hydraulic fracturing design and operation, and field management. The study investigates various geomechanical rock properties and their relationships to one another using data extracted from rock mechanics testing conducted on shale core samples. For rock elastic properties correlations, dynamic elastic properties determined from compressional sonic velocity, shear sonic velocity and density are plotted against laboratory-measured static elastic properties obtained from triaxial tests. Steps were taken to further refine the properties correlations by separating the data from vertical and horizontal core samples, using data from tests conducted at in-situ confining stress condition, and focusing on data only taken from Field A and nearby fields. Similar steps were also taken to develop the correlations for rock strength properties. Correlations for the shale anisotropic elastic properties were also developed based on ratio of horizontal and vertical elastic properties. Blind tests were conducted on three wells in Field A using the new rock properties correlations which showed good matching of the predicted geomechanical properties with the new correlations and core measured test data.

2020 ◽  
Author(s):  
Leandra M. Weydt ◽  
Ángel Andrés Ramírez-Guzmán ◽  
Antonio Pola ◽  
Baptiste Lepillier ◽  
Juliane Kummerow ◽  
...  

Abstract. Petrophysical and mechanical rock properties are key parameters for the characterization of the deep subsurface in different disciplines such as geothermal heat extraction, petroleum reservoir engineering or mining. They are commonly used for the interpretation of geophysical data and the parameterization of numerical models and thus are the basis for economic reservoir assessment. However, detailed information regarding petrophysical and mechanical rock properties for each relevant target horizon are often scarce, inconsistent or distributed over multiple publications. Therefore, subsurface models are often populated with generalized or assumed values resulting in high uncertainties. Furthermore, diagenetic, metamorphic and hydrothermal processes significantly affect the physiochemical and mechanical properties often leading to a high geological variability. A sound understanding of the controlling factors is needed to identify statistical and causal relationships between the properties as a basis for a profound reservoir assessment and modeling. Within the scope of the GEMex project (EU-H2020, GA Nr. 727550), which aims to develop new transferable exploration and exploitation approaches for enhanced and super-hot unconventional geothermal systems, a new workflow was applied to overcome the gap of knowledge of the reservoir properties. Two caldera complexes located in the northeastern Trans-Mexican Volcanic Belt – the Acoculco and Los Humeros caldera – were selected as demonstration sites. The workflow starts with outcrop analogue and reservoir core sample studies in order to define and characterize the properties of all key units from the basement to the cap rock as well as their mineralogy and geochemistry. This allows the identification of geological heterogeneities on different scales (outcrop analysis, representative rock samples, thin sections and chemical analysis) enabling a profound reservoir property prediction. More than 300 rock samples were taken from representative outcrops inside of the Los Humeros and Acoculco calderas, the surrounding areas and from exhumed fossil systems in Las Minas and Zacatlán. Additionally, 66 core samples from 16 wells of the Los Humeros geothermal field and 8 core samples from well EAC1 of the Acoculco geothermal field were collected. Samples were analyzed for particle and bulk density, porosity, permeability, thermal conductivity, thermal diffusivity, heat capacity, as well as ultra-sonic wave velocities, magnetic susceptibility and electric resistivity. Afterwards, destructive rock mechanical tests (point load tests, uniaxial and triaxial tests) were conducted to determine tensile strength, uniaxial compressive strength, Young’s modulus, Poisson’s ratio, bulk modulus, shear modulus, fracture toughness, cohesion and friction angle. In addition, XRD and XRF analyses were performed on 137 samples to provide information about the mineral assemblage, bulk geochemistry and the intensity of hydrothermal alteration. An extensive rock property database was created (Weydt et al. 2020, http://dx.doi.org/10.25534/tudatalib-201.2), comprising 34 parameters determined on more than 2,160 plugs. More than 31,000 data entries were compiled covering volcanic, sedimentary, metamorphic and igneous rocks from different ages (Jurassic to Holocene), thus facilitating a wide field of applications regarding resource assessment, modeling and statistical analyses.


2011 ◽  
Vol 3 (4) ◽  
Author(s):  
Roger Slatt

AbstractThe revelation of vast global quantities of potentially productive gas and oil-prone shales has led to advancements in understanding important geological properties which impact reservoir performance. Based upon research on a variety of shales, several geological properties have been recognized as being common and important to hydrocarbon production. (1) transport/depositional processes include hemipelagic ‘rain’, hyperpycnal flows, turbidity current flows, tempestites, wave-reworking, and contour currents in both shallow and deep water settings. (2) Common shale minerals include clays, quartz, calcite, dolomite, apatite, and pyrite; organic constituents include spores (Tasmanites), plant remains, biogenic quartz and calcite, and arenaceous foraminifera. (3) Porosity and permeability are characteristically low with pore sizes ranging down to the nanoscale. Main pore types include intergranular (including pores within clay floccules), porous organic matter, porous fecal pellets, and microfractures. (4) Important geochemical characteristics include organic richness (>3%), maturity (>1.1%Ro for shale gas and 0.6–0.9% for shale oil) and type (I–IV), in addition to certain biomarkers which are indicators of bottom water oxicity during deposition. Remaining hydrocarbon potential [RHP = (S1 + S2)/TOC] also reflects temporal environmental changes. ‘Isotopic reversals’ can be used to detect best producing areas in shale-gas plays. (5) Lithofacies stacking patterns and sequence stratigraphy are the result of eustatic depositional history. A general sequence stratigraphic model is presented here that highlights this commonality. (6) Geomechanical properties are key to drilling, fracturing and production of hydrocarbons. Brittle-ductile couplets at several scales occur in shale sequences. (7) Geophysical properties, when calibrated to rock properties, provide a means of regionally to locally mapping the aforementioned properties. (8) Economic and societal considerations in the exploration and development of resource shales are garnering attention. Many potentially economic shale-gas and shale-oil plays are being identified globally. Risks and uncertainties associated with gas- and oil-rich shales include the lack of long-term production histories, environmental concerns related to hydraulic fracturing, uncertainty in calculating hydrocarbons-in-place, and fluctuations in supply, demand, and price.


2021 ◽  
Vol 13 (2) ◽  
pp. 571-598 ◽  
Author(s):  
Leandra M. Weydt ◽  
Ángel Andrés Ramírez-Guzmán ◽  
Antonio Pola ◽  
Baptiste Lepillier ◽  
Juliane Kummerow ◽  
...  

Abstract. Petrophysical and mechanical rock properties are key parameters for the characterization of the deep subsurface in different disciplines such as geothermal heat extraction, petroleum reservoir engineering or mining. They are commonly used for the interpretation of geophysical data and the parameterization of numerical models and thus are the basis for economic reservoir assessment. However, detailed information regarding petrophysical and mechanical rock properties for each relevant target horizon is often scarce, inconsistent or distributed over multiple publications. Therefore, subsurface models are often populated with generalized or assumed values resulting in high uncertainties. Furthermore, diagenetic, metamorphic and hydrothermal processes significantly affect the physiochemical and mechanical properties often leading to high geological variability. A sound understanding of the controlling factors is needed to identify statistical and causal relationships between the properties as a basis for a profound reservoir assessment and modeling. Within the scope of the GEMex project (EU H2020, grant agreement no. 727550), which aims to develop new transferable exploration and exploitation approaches for enhanced and super-hot unconventional geothermal systems, a new workflow was applied to overcome the gap of knowledge of the reservoir properties. Two caldera complexes located in the northeastern Trans-Mexican Volcanic Belt – the Acoculco and Los Humeros caldera – were selected as demonstration sites. The workflow starts with outcrop analog and reservoir core sample studies in order to define and characterize the properties of all key units from the basement to the cap rock as well as their mineralogy and geochemistry. This allows the identification of geological heterogeneities on different scales (outcrop analysis, representative rock samples, thin sections and chemical analysis) enabling a profound reservoir property prediction. More than 300 rock samples were taken from representative outcrops inside the Los Humeros and Acoculco calderas and the surrounding areas and from exhumed “fossil systems” in Las Minas and Zacatlán. Additionally, 66 core samples from 16 wells of the Los Humeros geothermal field and 8 core samples from well EAC1 of the Acoculco geothermal field were collected. Samples were analyzed for particle and bulk density, porosity, permeability, thermal conductivity, thermal diffusivity, and heat capacity, as well as ultrasonic wave velocities, magnetic susceptibility and electric resistivity. Afterwards, destructive rock mechanical tests (point load tests, uniaxial and triaxial tests) were conducted to determine tensile strength, uniaxial compressive strength, Young's modulus, Poisson's ratio, the bulk modulus, the shear modulus, fracture toughness, cohesion and the friction angle. In addition, X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses were performed on 137 samples to provide information about the mineral assemblage, bulk geochemistry and the intensity of hydrothermal alteration. An extensive rock property database was created (Weydt et al., 2020; https://doi.org/10.25534/tudatalib-201.10), comprising 34 parameters determined on more than 2160 plugs. More than 31 000 data entries were compiled covering volcanic, sedimentary, metamorphic and igneous rocks from different ages (Jurassic to Holocene), thus facilitating a wide field of applications regarding resource assessment, modeling and statistical analyses.


2021 ◽  
Author(s):  
Mahdi Ramezanian ◽  
Hossein Emadi

Abstract A few researches have been conducted to study effects of cryogenic treatment (known as thermal shocking) on unconventional rock properties, while they have been extensively studied in geothermal projects. The results show that cryogenic treatment significantly alters the rock mechanical properties by creation of new cracks owing to thermally induced stresses resulting in the permeability enhancement. In this laboratory study, effects of cryogenic treatment (thermal shocking) on permeability and dynamic elastic properties of three Wolfcamp core samples (one outcrop and two downhole samples) at downhole conditions were experimentally evaluated. Permeability and dynamic rock mechanical properties were measured before and after conducting each cycle of thermal shock. Using X-ray powder diffraction (XRD) analysis, the mineral compositions of the cores were determined. The results demonstrate that implementing the thermal shock technique on the core samples results in increasing their permeability and ductility.


Geophysics ◽  
2021 ◽  
pp. 1-53
Author(s):  
Tongcheng Han ◽  
Hongyan Yu ◽  
Li-Yun Fu

Shales are abundant and are increasingly important for the hydrocarbon industry as source rocks and unconventional reservoirs. The anisotropic dynamic elastic properties of shales are important in the exploration stage of shale reservoirs whereas their static elastic properties are key for the hydraulic fracturing for the more efficient development of shale gas and oil. However, the correlations between the static and anisotropic dynamic elastic properties that could provide a basis for the seismic methods to potentially evaluate the fracturing ability of shales without the need of cored samples from the borehole are still poorly understood. We have demonstrated, through dedicated simultaneous laboratory measurements of the anisotropic velocities and the strains of samples under triaxial stress, how the static and anisotropic dynamic elastic properties are correlated in seven lacustrine shales from the Ordos Basin, one of the major shale gas plays in China. The results show that the static and anisotropic dynamic elastic properties are stress-dependent. More importantly, the anisotropic velocities are found to be approximately linearly correlated with the axial strains of the samples at differential stress (the difference between axial stress and confining stress) greater than 30 MPa, with the slopes of the linear correlations in excellent linear relationship with Young’s moduli determined from the static elastic measurements. The results not only reveal the internal link between the static and anisotropic dynamic elastic properties of lacustrine shales, but they also pave a potential way for the anisotropic seismic explorations to remotely evaluate the fracturing ability of shales.


Author(s):  
Suresh Dande ◽  
◽  
Robert R. Stewart ◽  
Nikolay Dyaur ◽  
◽  
...  

Laboratory physical models play an important role in understanding rock properties and wave propagation, both theoretically and at the field scale. In some cases, 3D-printing technology can be adopted to construct complex rock models faster, more inexpensively, and with more specific features than previous model-building techniques. In this study, we use 3D-printed rock models to assist in understanding the effects of various fluids (air, water, engine oil, crude oil, and glycerol) on the models’ elastic properties. We first used a 3D-printed, 1-in. cube-shaped layered model. This model was created with a 6% primary porosity and a bulk density of 0.98 g/cc with VTI anisotropy. We next employed a similar cube but with horizontal inclusions embedded in the layered background, which contributed to its total 24% porosity (including primary porosity). For air to liquid saturation, P-velocities increased for all liquids in both models, with the highest increase being with glycerol (57%) and an approximately 45% increase for other fluids in the inclusion model. For the inclusion model (dry and saturated), we observed a greater difference between two orthogonally polarized S-wave velocities (Vs1 and Vs2) than between two P-wave velocities (VP0 and VP90). We attribute this to the S2-wave (polarized normal to both the layering and the plane of horizontal inclusions), which appears more sensitive to horizontal inclusions than the P-wave. For the inclusion model, Thomsen’s P-wave anisotropic parameter (ɛ) decreased from 26% for the air case to 4% for the water-saturated cube and to 1% for glycerol saturation. The small difference between the bulk modulus of the frame and the pore fluid significantly reduces the velocity anisotropy of the medium, making it almost isotropic. We compared our experimental results with theory and found that predictions using Schoenberg’s linear slip theory combined with Gassmann’s anisotropic equation were closer to actual measurements than Hudson’s isotropic calculations. This work provides insights into the usefulness of 3D-printed models to understand elastic rock properties and wave propagation under various fluid saturations.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. O39-O55 ◽  
Author(s):  
Alessio Rucci ◽  
D. W. Vasco ◽  
Fabrizio Novali

Deformation in the overburden proves useful in deducing spatial and temporal changes in the volume of a producing reservoir. Based on these changes, we have estimated diffusive traveltimes associated with the transient flow due to production, and then, as the solution of a linear inverse problem, the effective permeability of the reservoir. An advantage of the approach based on traveltimes, as opposed to one based on the amplitude of surface deformation, is that it is much less sensitive to the exact geomechanical properties of the reservoir and overburden. Inequalities constrain the inversion, under the assumption that the fluid production only results in pore volume decreases within the reservoir. The formulation has been applied to satellite-based estimates of deformation in the material overlying a thin gas production zone at the Krechba field in Algeria. The peak displacement after three years of gas production is found to be approximately [Formula: see text], overlying the eastern margin of the anticlinal structure defining the gas field. Using data from 15 irregularly spaced images of range change, we have calculated the diffusive traveltimes associated with the startup of a gas production well. The inequality constraints were incorporated into the estimates of model parameter resolution and covariance, improving the resolution by roughly 30% to 40%.


1992 ◽  
Vol 29 (3) ◽  
pp. 522-526 ◽  
Author(s):  
Y. P. Vaid ◽  
S. Sasitharan

The effects of stress path and loading direction in the triaxial test on strength and dilatancy of sand are investigated. It is shown that the unique relationship observed between peak friction angle and dilation rate at peak in conventional triaxial tests is followed regardless of stress path, confining stress at failure, relative density, and the mode of loading (compression or extension). Key words : sand, peak friction angle, dilatancy, stress path, triaxial test.


SPE Journal ◽  
2021 ◽  
pp. 1-21
Author(s):  
Saeed Rafieepour ◽  
Stefan Z. Miska ◽  
Evren M. Ozbayoglu ◽  
Nicholas E. Takach ◽  
Mengjiao Yu ◽  
...  

Summary In this paper, an extensive series of experiments was performed to investigate the evolution of poromechanical (dry, drained, undrained, and unjacketed moduli), transport (permeability), and strength properties during reservoir depletion and injection in a high-porosity sandstone (Castlegate). An overdetermined set of eight poroelastic moduli was measured as a function of confining pressure (Pc) and pore pressure (Pp). The results showed larger effect on pore pressure at low Terzaghi’s effective stress (nonlinear trend) during depletion and injection. Moreover, the rock sample is stiffer during injection than depletion. At the same Pc and Pp, Biot’s coefficient and Skempton’s coefficient are larger in depletion than injection. Under deviatoric loading, absolute permeability decreased by 35% with increasing effective confining stress up to 20.68 MPa. Given these variations in rock properties, modeling of in-situ-stress changes using constant properties could attain erroneous predictions. Moreover, constant deviatoric stress-depletion/injection failure tests showed no changes or infinitesimal variations of strength properties with depletion and injection. It was found that failure of Castlegate sandstone is controlled by simple effective stress, as postulated by Terzaghi. Effective-stress coefficients at failure (effective-stress coefficient for strength) were found to be close to unity (actual numbers, however, were 1.03 for Samples CS-5 and CS-9 and 1.04 for Sample CS-10). Microstructural analysis of Castlegate sandstone using both scanning electron microscope (SEM) and optical microscope revealed that the changes in poroelastic and transport properties as well as the significant hysteresis between depletion and injection are attributed to the existence and distribution of compliant components such as pores, microcracks, and clay minerals.


Sign in / Sign up

Export Citation Format

Share Document