An Innovative Approach to P&A Barrier Verification and Cement Plug Placement Utilising In-Situ Completion Strings: A Case Study
Abstract Traditional evaluation of behind-casing cement bond quality prior to cement plug placement involves removal, storage, transportation, and disposal of the tubing completion string. This paper presents an innovative approach to verifying cement bond and subsequent cement plug placement. This method involves cutting and retrieving part of the completion string and deploying acoustic logging tools into the casing, followed by using the tubing as a cement stinger. The procedure described in this paper first involves plugging and cutting the tubing, followed by partial retrieval of the completion to expose the abandonment horizon, which may be an impermeable shale or salt layer. A radial cement bond log tool is conveyed on wireline out of the tubing cut in order to evaluate the cement bond behind the exposed casing section. The existing cement sheath is assessed in accordance to a cement evaluation criteria to determine suitability as a barrier. A balanced cement plug is pumped utilising the existing completion string rather than a dedicated stinger. The permanent barrier is then verified appropriately based on satisfying key metrics in the pumping operation before hanging off the completion tubing in-hole and progressing with the rest of the abandonment programme. In the case study presented here, the tool string design considered the need to pass completion restrictions, convey through production tubing, and remain centralised with up to 50-degree deviation. Analysis of cement bond log data indicated that bond quality was good and suitable to place an internal cement plug across the abandonment horizon. This satisfied a minimum of 200-ft coverage across the zone of interest. The existing deep-set mechanical plug placed in the tubing prior to tubing cut was utilised as a base for the cement barrier. A 2,000-ft balanced cement plug was successfully set across the zone of interest. The completion tubing was used as a conduit for cement slurry placement, eliminating the usage of a dedicated work string. At the end of displacement, the tubing string was pulled out of hole safely to approximately 500-ft above the top of the cement with the help of controlled-gel progression properties incorporated in the slurry design. Due to existing completion accessories, setting a through-tubing cement plug and tubing rotation is not an option. Expandable cement was pumped to mitigate natural shrinkage and enhance post-set cement expansion to ensure a competent barrier. The cement job objectives were achieved by meeting the cementation execution criteria with no requirement to wait on cement. This provides additional time saving to the well abandonment. The discussed approach has successfully realised a significant rig-time saving of approximately two days on each well. Going forward, the methodology has effectively been applied to multiple wells across the Southern North Sea (SNS).