scholarly journals Numerical Simulation and Application Analysis on Characteristic of Coherent Jet and Traditional Supersonic Jet

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
G. Ezhilmaran ◽  
Suresh Chandra Khandai ◽  
Yogesh Kumar Sinha ◽  
S. Thanigaiarasu

Abstract This paper presents the numerical simulation of Mach 1.5 supersonic jet with perforated tabs. The jet with straight perforation tab was compared with jets having slanted perforated tabs of different diameters. The perforation angles were kept as 0° and 10° with respect to the axis of the nozzle. The blockage areas of the tabs were 4.9 %, 4.9 % and 2.4 % for straight perforation, 10° slanted perforation ( {{{\Phi }}_{\ }} = 1.3 mm) and 10° slanted perforation ( {{{\Phi }}_{\ }} = 1.65 mm) respectively. The 3-D numerical simulations were carried out using the software. The mixing enhancements caused by these tabs were studied in the presence of adverse and favourable pressure gradients, corresponding to nozzle pressure ratio (NPR) of 3, 3.7 and 5. For Mach number 1.5 jet, NPR 3 corresponds to 18.92 % adverse pressure gradients and NPR 5 corresponds to 35.13 % favourable pressure gradients. The centerline Mach number of the jet with slanted perforations is found to decay at a faster rate than uncontrolled nozzle and jet with straight perforation tab. Mach number plots were obtained at both near-field and far field downstream locations. There is 25 % and 65 % reduction in jet core length were observed for the 0° and 10° perforated tabs respectively in comparison to uncontrolled jet.


2011 ◽  
Vol 189-193 ◽  
pp. 2362-2365
Author(s):  
Yong Yu ◽  
Guo Qing Zhang ◽  
Fei Wang

The viscous flow of the supersonic jet element was simulated numerically based on CFD technology, and many tests have been done to verify the numerical precision. The results show that the calculated data are good agreement with the experimental data. So the numerical simulation of the viscous flow for the supersonic jet element is accurate and reliable, and it can be applied to investigate the steady flow and unsteady flow in supersonic jet element.


1998 ◽  
Vol 46 (536) ◽  
pp. 485-496 ◽  
Author(s):  
Nobuyuki TSUBOI ◽  
A. Koichi HAYASHI ◽  
Toshitaka FUJIWARA ◽  
Kazuo ARASHI ◽  
Masaru KODAMA

2014 ◽  
Vol 9 (2) ◽  
pp. 75-83
Author(s):  
Valeriy Zapryagaev ◽  
Ivan Kavun ◽  
Sergey Kundasev

The aim of the investigation is to understand the shock-wave structure of the supersonic jet exhausting from a beveled nozzle. Results of investigation are presented as cross section Pitotpressure fields. This data can be used for verification of CFD results. The experiment was complemented by numerical simulation with using of the program packet ANSYS Fluent. The satisfactory qualitative agreement was obtained


Sign in / Sign up

Export Citation Format

Share Document