Liposome: A Powerful Approach Festinates Drug Delivery System

Author(s):  
Pawar Vinita ◽  
Mishra Shiv ◽  
Yadav Mahavir ◽  
Tiwari Archana

Drug delivery systems have become important tools for the specific delivery of a large Number of drug molecules. Liposomes are microparticulate lipoidal vesicles which are under extensive investigation as drug carriers for improving the delivery of therapeutic agents. Initially they were used to study biomembrane behavior but later on developed into a drug delivery system for targeting specific sites of action like the tumor targeting, gene and antisense therapy, genetic vaccination, immunomodulation, topical, cytosolic, and respiratory various infections etc.

2017 ◽  
Author(s):  
Ayesha Naeem

Liposomes derived from two Greek words:Lipo(FAT) and soma(BODY).It is so named because of its composition is primarily of phopholipid.Liposomes are microparticulate lipoidal vesicales which are under extensive investigation as drug carriers for improving the drug delivery of therapeutic agents,relatively composed of biocompatible and bio degradable materials,and they consists of an aqueous volume entrapped by one or more bilayers of natural or synthetic lipids.A liposome is a spherical veicle having at least one lipid bilayer.the liposomes can be used as a vehicle for administration of nutrients and pharmaceutical drugs.liposomes can be prepared by disrupting biological membranes(such as by sonication).Size range:25-5000nm.


Author(s):  
Asif Eqbal ◽  
Vaseem Ahamad Ansari ◽  
Abdul Hafeez ◽  
Farogh Ahsan ◽  
Mohd Imran ◽  
...  

Nanoemulsions are drug transporters for the delivery of therapeutic agents. They possess the small droplet size having the range of 20×10-9-200×10-9m. The main purpose of using Nanoemulsion is to enhance the drug bio- availability of transdermal drug delivery system. With the help of phase diagram, we can select the components of nanoemulsion depending upon formulas ratio of oil phase, surfactant/co-surfactant and water phase. Nanoemulsion directly used as a topical drug delivery in skin organs. The most useable pharmaceutical application has been developed till date to provide systemic effects to penetrating the full thickness of skin organ layer nanoemulsions can be administered through variety of routes such as percutaneous, perioral, topical, transdermal, ocular and parental administration of medicaments. Nanoemulsions are transparent and slightly opalescent. Nanoemulsion can be prepared through various methods. Nanoemulsions are transparent and slightly opalescent. Factor affecting nanoemulsions are surfactant, viscosity, lipophilic, drug content, pH, concentration of each component, and methodology of formulation. It is unfeasible to test all factors at the various levels. Design of formulation when it comes to experimental design it gives an excellent approach through reducing the time and money.


2012 ◽  
Vol 13 (8) ◽  
pp. 2594-2604 ◽  
Author(s):  
Sergey K. Filippov ◽  
Petr Chytil ◽  
Petr V. Konarev ◽  
Margarita Dyakonova ◽  
ChristineM. Papadakis ◽  
...  

2019 ◽  
Vol 7 (23) ◽  
pp. 3724-3736 ◽  
Author(s):  
Changliang Liu ◽  
Houqian Gao ◽  
Zijian Zhao ◽  
Iman Rostami ◽  
Chen Wang ◽  
...  

A dual-functional drug delivery system based on the conjugation of PAMAM dendrimer with EBP-1 and TAT peptide was established for the therapy of triple-negative breast cancer.


2019 ◽  
Vol 53 ◽  
pp. 101144 ◽  
Author(s):  
Simona Giarra ◽  
Noemi Lupo ◽  
Virginia Campani ◽  
Alfonso Carotenuto ◽  
Laura Mayol ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jonathan Rios-Doria ◽  
Adam Carie ◽  
Tara Costich ◽  
Brian Burke ◽  
Habib Skaff ◽  
...  

Chemotherapeutic drugs are widely used for the treatment of cancer; however, use of these drugs is often associated with patient toxicity and poor tumor delivery. Micellar drug carriers offer a promising approach for formulating and achieving improved delivery of hydrophobic chemotherapeutic drugs; however, conventional micelles do not have long-term stability in complex biological environments such as plasma. To address this problem, a novel triblock copolymer has been developed to encapsulate several different hydrophobic drugs into stable polymer micelles. These micelles have been engineered to be stable at low concentrations even in complex biological fluids, and to release cargo in response to low pH environments, such as in the tumor microenvironment or in tumor cell endosomes. The particle sizes of drugs encapsulated ranged between 30–80 nm, with no relationship to the hydrophobicity of the drug. Stabilization of the micelles below the critical micelle concentration was demonstrated using a pH-reversible crosslinking mechanism, with proof-of-concept demonstrated in both in vitro and in vivo models. Described herein is polymer micelle drug delivery system that enables encapsulation and stabilization of a wide variety of chemotherapeutic drugs in a single platform.


2019 ◽  
Vol 33 (10) ◽  
pp. 1394-1406 ◽  
Author(s):  
Juan Cai ◽  
Keyang Qian ◽  
Xueliang Zuo ◽  
Wuheng Yue ◽  
Yinzhu Bian ◽  
...  

Docetaxel (TXT) is acknowledged as one of the most important chemotherapy agents for gastric cancer (GC). PI3K/AKT signaling is frequently activated in GC, and its inhibitor LY294002 exerts potent antitumor effects. However, the hydrophobicity of TXT and the poor solubility and low bioavailability of LY294002 limit their clinical application. To overcome these shortcomings, we developed poly(lactic acid/glycolic) (PLGA) nanoparticles loaded with TXT and LY294002. PLGA facilitated the accumulation of TXT and LY294002 at the tumor sites. The in vitro functional results showed that PLGA(TXT+LY294002) exhibited controlled-release and resulted in a markedly reduced proliferative capacity and an elevated apoptosis rate. An in vivo orthotopic GC mouse model and xenograft mouse model confirmed the anticancer superiority and tumor-targeting feature of PLGA(TXT+LY294002). Histological analysis indicated that PLGA(TXT+LY294002) was biocompatible and had no toxicity to major organs. Characterized by the combined slow release of TXT and LY294002, this novel PLGA-based TXT/LY294002 drug delivery system provides controlled release and tumor targeting and is safe, shedding light on the future of targeted therapy against GC.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5147
Author(s):  
Wanting Hou ◽  
Ruiqi Liu ◽  
Siwei Bi ◽  
Qian He ◽  
Haibo Wang ◽  
...  

Due to a strong retardation effect of o-nitrobenzyl ester on polymerization, it is still a great challenge to prepare amphiphilic block copolymers for polymersomes with a o-nitrobenzyl ester-based hydrophobic block. Herein, we present one such solution to prepare amphiphilic block copolymers with pure poly (o-nitrobenzyl acrylate) (PNBA) as the hydrophobic block and poly (N,N’-dimethylacrylamide) (PDMA) as the hydrophilic block using bulk reversible addition-fragmentation chain transfer (RAFT) polymerization of o-nitrobenzyl acrylate using a PDMA macro-RAFT agent. The developed amphiphilic block copolymers have a suitable hydrophobic/hydrophilic ratio and can self-assemble into photoresponsive polymersomes for co-loading hydrophobic and hydrophilic cargos into hydrophobic membranes and aqueous compartments of the polymersomes. The polymersomes demonstrate a clear photo-responsive characteristic. Exposure to light irradiation at 365 nm can trigger a photocleavage reaction of o-nitrobenzyl groups, which results in dissociation of the polymersomes with simultaneous co-release of hydrophilic and hydrophobic cargoes on demand. Therefore, these polymersomes have great potential as a smart drug delivery nanocarrier for controllable loading and releasing of hydrophilic and hydrophobic drug molecules. Moreover, taking advantage of the conditional releasing of hydrophilic and hydrophobic drugs, the drug delivery system has potential use in medical applications such as cancer therapy.


2016 ◽  
Vol 4 (21) ◽  
pp. 3823-3831 ◽  
Author(s):  
Stefano Fedeli ◽  
Alberto Brandi ◽  
Lorenzo Venturini ◽  
Paola Chiarugi ◽  
Elisa Giannoni ◽  
...  

An efficient drug delivery system through a straightforward approach to multi-walled carbon nanotube decoration.


Nanoscale ◽  
2015 ◽  
Vol 7 (38) ◽  
pp. 16061-16070 ◽  
Author(s):  
Xiao-Gang Wang ◽  
Zhi-Yue Dong ◽  
Hong Cheng ◽  
Shuang-Shuang Wan ◽  
Wei-Hai Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document