scholarly journals Image Quality and Radiation Dose for Fibrofatty Breast using Target/filter Combinations in Two Digital Mammography Systems

2020 ◽  
Vol 10 ◽  
pp. 56
Author(s):  
Khaled Alkhalifah ◽  
Akram Asbeutah ◽  
Ajit Brindhaban

Objectives: The aim of this study was to determine the optimum combinations of target and filter materials for various X-ray tube voltage settings, as well as their effects on image quality and radiation dose. This was done using different digital mammography (DM) imaging systems with a breast equivalent phantom. Material and Methods: Two DM units with a tungsten (W) target, silver (Ag), and rhodium (Rh) filters and dual molybdenum (Mo) and Rh targets/filters were used. A tissue-equivalent mammography phantom of 6 cm thickness equivalent to a fibrofatty breast was exposed 20 times to different target/filter material combinations (W/Rh, W/Ag, Rh/Rh, Mo/Rh, and Mo/Mo) and various kV settings (28–34 kV). The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated for each exposure. Results: The W/Ag combination resulted in the lowest entrance skin dose and mean glandular dose (MGD). The MGD for the W/Rh combination was 60% less than that of the W/Ag combination at 34 kV (P < 0.05). There was a direct relationship in the SNR with the Mo/Mo, Mo/Rh, and Rh/Rh combinations and an inverse relationship with the CNR in the 34 kV range. There were statistically significant differences between all five target/filter combinations, and the best SNR and CNR were observed for the W/Rh combination with a reduced radiation dose in the range of 28–30 kV (P < 0.05). Conclusion: For a breast thicknesses of 6 cm with a fibrofatty nature, the W/Rh combination delivers high performance in terms of image quality at a lower dose.

2018 ◽  
Vol 59 (10) ◽  
pp. 1247-1253 ◽  
Author(s):  
Paola Maria Cannaò ◽  
Francesco Secchi ◽  
Marco Alì ◽  
Ida Daniela D'Angelo ◽  
Marco Scarabello ◽  
...  

Background Cardiovascular computed tomography (CCT) technology is rapidly advancing allowing to perform good quality examinations with a radiation dose as low as 1.2 mSv. However, latest generation scanners are not available in all centers. Purpose To estimate radiation dose and image quality in pediatric CCT using a standard 64-slice scanner. Material and Methods A total of 100 patients aged 6.9 ± 5.4 years (mean ± standard deviation) who underwent a 64-slice CCT scan using 80, 100, or 120 kVp, were retrospectively evaluated. Radiation effective dose was calculated on the basis of the dose length product. Two independent readers assessed the image quality through signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and a qualitative score (3 = very good, 2 = good, 1 = poor). Non-parametric tests were used. Results Fifty-five exams were not electrocardiographically (ECG) triggered, 20 had a prospective ECG triggering, and 25 had retrospective ECG triggering. The median effective dose was 1.3 mSv (interquartile range [IQR] = 0.8–2.7 mSv). Median SNR was 30.6 (IQR = 23.4–33.6) at 120 kVp, 29.4 (IQR = 23.7–34.8) at 100 kVp, and 24.7 (IQR = 19.4–34.3) at 80 kVp. Median CNR was 21.0 (IQR = 14.8–24.4), 19.1 (IQR = 15.6–23.9), and 25.3 (IQR = 19.4–33.4), respectively. Image quality was very good, good, and poor in 56, 39, and 5 patients, respectively. No significant differences were found among voltage groups for SNR ( P = 0.486), CNR ( P = 0.336), and subjective image quality ( P = 0.296). The inter-observer reproducibility was almost perfect (κ = 0.880). Conclusion High-quality pediatric CCT can be performed using a 64-slice scanner, with a radiation effective dose close to 2 mSv in about 50% of the cases.


1998 ◽  
Vol 4 (3) ◽  
pp. 199-207 ◽  
Author(s):  
M. Söderman ◽  
B. Hansson ◽  
B. Axelsson

During endovascular treatment the patient may be subject to fluoroscopy for long periods as well as multiple x-ray exposures. The radiation dose to the patient can be considerable, and cause local deterministic effects such as alopecia or even skin burn. The potential carcinogenic effects should also be noted, being especially important in the paediatric population. We measured radiation doses to patients and personnel during neuroendovascular procedures and diagnostic neuroangiography. We also tried to reduce the radiation dose to the patient utilising increased tube voltage, additional primary X-ray filtration and by removing the antiscatter grid in front of the image intensifier, employing air gap technique. We investigated radiation doses to patient and personnel during neuroangiographic procedures and optimized the examination technique with regard to radiation dose with maintained image quality. Radiation exposure to patients and personnel was measured with thermoluminescent dosimeters and permanently mounted KermaDose-Area-Product meters in front of the X-ray tubes during 13 cerebral angiographies and six neuroendovascular procedures. We performed experiments with radiation dose measurements and evaluation of image quality with 80 and 90 kV tube voltage during image acquisition and 75 and 85 kV during fluoroscopy, as well as with different primary X-ray filtration. Images from patient studies acquired with the original grid in front of the image intensifier were compared with images from patient studies acquired with the grid removed and air gap technique (30 cm). Images from patient studies acquired with the original examination technique were compared to images from patient studies acquired with increased x-ray tube voltage, increased x-ray filtering and with the antiscatter grid removed using an airgap as scatter reduction method. Radiation exposure to personnel was very low using standard protective devices. Measurable doses were recorded only on the hands and forehead of the neuroradiologist. Maximum entrance skin dose was about 1 Gy on the side of the patientspatient's forehead during an endovascular procedure. Increasing the tube voltage from 75 to 85 – 85 and 90 kV, exchanging the original 0.5 mm aluminium primary filtration for 0.2 mm copper and removing the antiscatter grid allowed us to reduce entrance skin dose to the patient by 70% with unchanged or slightly improved image quality.


2016 ◽  
Vol 6 ◽  
pp. 44 ◽  
Author(s):  
Philip V M Linsen ◽  
Adriaan Coenen ◽  
Marisa M Lubbers ◽  
Marcel L Dijkshoorn ◽  
Mohamed Ouhlous ◽  
...  

Purpose: This study aims to compare image quality, radiation dose, and the influence of the heart rate on image quality of high-pitch spiral coronary computed tomography angiography (CCTA) using 128-slice (second generation) dual-source CT (DSCT) and a 192-slice DSCT (third generation) scanner. Materials and Methods: Two consecutive cohorts of fifty patients underwent CCTA by high-pitch spiral scan mode using 128 or 192-slice DSCT. The 192-slice DSCT system has a more powerful roentgen tube (2 × 120 kW) that allows CCTA acquisition at lower tube voltages, wider longitudinal coverage for faster table speed (732 m/s), and the use of iterative reconstruction. Objective image quality was measured as the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality was evaluated using a Likert scale. Results: While the effective dose was lower with 192-slice DSCT (1.2 ± 0.5 vs. 0.6 ± 0.3 mSv; P < 0.001), the SNR (18.9 ± 4.3 vs. 11.0 ± 2.9; P < 0.001) and CNR (23.5 ± 4.8 vs. 14.3 ± 4.1; P < 0.001) were superior to 128-slice DSCT. Although patients scanned with 192-slice DSCT had a faster heart rate (59 ± 7 vs. 56 ± 6; P = 0.045), subjective image quality was scored higher (4.2 ± 0.8 vs. 3.0 ± 0.7; P < 0.001) compared to 128-slice DSCT. Conclusions: High-pitch spiral CCTA by 192-slice DSCT provides better image quality, despite a higher average heart rate, at lower radiation doses compared to 128-slice DSCT.


2014 ◽  
Vol 2 (2) ◽  
pp. 47-58
Author(s):  
Ismail Sh. Baqer

A two Level Image Quality enhancement is proposed in this paper. In the first level, Dualistic Sub-Image Histogram Equalization DSIHE method decomposes the original image into two sub-images based on median of original images. The second level deals with spikes shaped noise that may appear in the image after processing. We presents three methods of image enhancement GHE, LHE and proposed DSIHE that improve the visual quality of images. A comparative calculations is being carried out on above mentioned techniques to examine objective and subjective image quality parameters e.g. Peak Signal-to-Noise Ratio PSNR values, entropy H and mean squared error MSE to measure the quality of gray scale enhanced images. For handling gray-level images, convenient Histogram Equalization methods e.g. GHE and LHE tend to change the mean brightness of an image to middle level of the gray-level range limiting their appropriateness for contrast enhancement in consumer electronics such as TV monitors. The DSIHE methods seem to overcome this disadvantage as they tend to preserve both, the brightness and contrast enhancement. Experimental results show that the proposed technique gives better results in terms of Discrete Entropy, Signal to Noise ratio and Mean Squared Error values than the Global and Local histogram-based equalization methods


2021 ◽  
pp. 197140092110087
Author(s):  
Andrea De Vito ◽  
Cesare Maino ◽  
Sophie Lombardi ◽  
Maria Ragusi ◽  
Cammillo Talei Franzesi ◽  
...  

Background and purpose To evaluate the added value of a model-based reconstruction algorithm in the assessment of acute traumatic brain lesions in emergency non-enhanced computed tomography, in comparison with a standard hybrid iterative reconstruction approach. Materials and methods We retrospectively evaluated a total of 350 patients who underwent a 256-row non-enhanced computed tomography scan at the emergency department for brain trauma. Images were reconstructed both with hybrid and model-based iterative algorithm. Two radiologists, blinded to clinical data, recorded the presence, nature, number, and location of acute findings. Subjective image quality was performed using a 4-point scale. Objective image quality was determined by computing the signal-to-noise ratio and contrast-to-noise ratio. The agreement between the two readers was evaluated using k-statistics. Results A subjective image quality analysis using model-based iterative reconstruction gave a higher detection rate of acute trauma-related lesions in comparison to hybrid iterative reconstruction (extradural haematomas 116 vs. 68, subdural haemorrhages 162 vs. 98, subarachnoid haemorrhages 118 vs. 78, parenchymal haemorrhages 94 vs. 64, contusive lesions 36 vs. 28, diffuse axonal injuries 75 vs. 31; all P<0.001). Inter-observer agreement was moderate to excellent in evaluating all injuries (extradural haematomas k=0.79, subdural haemorrhages k=0.82, subarachnoid haemorrhages k=0.91, parenchymal haemorrhages k=0.98, contusive lesions k=0.88, diffuse axonal injuries k=0.70). Quantitatively, the mean standard deviation of the thalamus on model-based iterative reconstruction images was lower in comparison to hybrid iterative one (2.12 ± 0.92 vsa 3.52 ± 1.10; P=0.030) while the contrast-to-noise ratio and signal-to-noise ratio were significantly higher (contrast-to-noise ratio 3.06 ± 0.55 vs. 1.55 ± 0.68, signal-to-noise ratio 14.51 ± 1.78 vs. 8.62 ± 1.88; P<0.0001). Median subjective image quality values for model-based iterative reconstruction were significantly higher ( P=0.003). Conclusion Model-based iterative reconstruction, offering a higher image quality at a thinner slice, allowed the identification of a higher number of acute traumatic lesions than hybrid iterative reconstruction, with a significant reduction of noise.


2021 ◽  
Vol 94 (1125) ◽  
pp. 20210430
Author(s):  
Puja Shahrouki ◽  
Kim-Lien Nguyen ◽  
John M. Moriarty ◽  
Adam N. Plotnik ◽  
Takegawa Yoshida ◽  
...  

Objectives: To assess the feasibility of a rapid, focused ferumoxytol-enhanced MR angiography (f-FEMRA) protocol in patients with claustrophobia. Methods: In this retrospective study, 13 patients with claustrophobia expressed reluctance to undergo conventional MR angiography, but agreed to a trial of up to 10 min in the scanner bore and underwent f-FEMRA. Thirteen matched control patients who underwent gadolinium-enhanced MR angiography (GEMRA) were identified for comparison of diagnostic image quality. For f-FEMRA, the time from localizer image acquisition to completion of the angiographic acquisition was measured. Two radiologists independently scored images on both f-FEMRA and GEMRA for arterial and venous image quality, motion artefact and diagnostic confidence using a 5-point scale, five being best. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the aorta and IVC were measured. The Wilcoxon rank-sum test, one-way ANOVA with Tukey correction and two-tailed t tests were utilized for statistical analyses. Results: All scans were diagnostic and assessed with high confidence (scores ≥ 4). Average scan time for f-FEMRA was 6.27 min (range 3.56 to 10.12 min), with no significant difference between f-FEMRA and GEMRA in diagnostic confidence (4.86 ± 0.24 vs 4.69 ± 0.25, p = 0.13), arterial image quality (4.62 ± 0.57 vs 4.65 ± 0.49, p = 0.78) and motion artefact score (4.58 ± 0.49 vs 4.58 ± 0.28, p > 0.99). f-FEMRA scored significantly better for venous image quality than GEMRA (4.62 ± 0.42 vs 4.19 ± 0.56, p = 0.04). CNR in the IVC was significantly higher for steady-state f-FEMRA than GEMRA regardless of the enhancement phase (p < 0.05). Conclusions: Comprehensive vascular MR imaging of the thorax, abdomen and pelvis can be completed in as little as 5 min within the magnet bore using f-FEMRA, facilitating acceptance by patients with claustrophobia and streamlining workflow. Advances in knowledge: A focused approach to vascular imaging with ferumoxytol can be performed in patients with claustrophobia, limiting time in the magnet bore to 10 min or less, while acquiring fully diagnostic images of the thorax, abdomen and pelvis.


2020 ◽  
Vol 4 (2) ◽  
pp. 53-60
Author(s):  
Latifah Listyalina ◽  
Yudianingsih Yudianingsih ◽  
Dhimas Arief Dharmawan

Image processing is a technical term useful for modifying images in various ways. In medicine, image processing has a vital role. One example of images in the medical world, namely retinal images, can be obtained from a fundus camera. The retina image is useful in the detection of diabetic retinopathy. In general, direct observation of diabetic retinopathy is conducted by a doctor on the retinal image. The weakness of this method is the slow handling of the disease. For this reason, a computer system is required to help doctors detect diabetes retinopathy quickly and accurately. This system involves a series of digital image processing techniques that can process retinal images into good quality images. In this research, a method to improve the quality of retinal images was designed by comparing the methods for adjusting histogram equalization, contrast stretching, and increasing brightness. The performance of the three methods was evaluated using Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), and Signal to Noise Ratio (SNR). Low MSE values and high PSNR and SNR values indicated that the image had good quality. The results of the study revealed that the image was the best to use, as evidenced by the lowest MSE values and the highest SNR and PSNR values compared to other techniques. It indicated that adaptive histogram equalization techniques could improve image quality while maintaining its information.


Microscopy ◽  
2020 ◽  
Vol 69 (1) ◽  
pp. 31-36
Author(s):  
Ji-Youn Kim ◽  
Youngjin Lee

Abstract This study aimed to develop and evaluate an improved median filter (IMF) with an adaptive mask size for light microscope (LM) images. We acquired images of the mouse first molar using a LM at 100× magnification. The images obtained using our proposed IMF were compared with those from a conventional median filter. Several parameters such as the contrast-to-noise ratio, coefficient of variation, no-reference assessments and peak signal-to-noise ratio were employed to evaluate the image quality quantitatively. The results demonstrated that the proposed IMF could effectively de-noise the LM images and preserve the image details, achieving a better performance than the conventional median filter.


Author(s):  
Mohamed Ibrahim Youssif ◽  
Amr ElSayed Emam ◽  
Mohamed Abd ElGhany

<p>Image transmission over Orthogonal Frequency-Division Multiplexing (OFDM) communication system is prone to distortion and noise due to the encountered High-Peak-to-Average-Power-Ratio (PAPR) generated from the OFDM block. This paper studies the utilization of Residue Number System (RNS) as a coding scheme for digital image transmission over Multiple-Input-Multiple-Output (MIMO) – OFDM transceiver communication system. The use of the independent parallel feature of RNS, as well as the reduced signal amplitude to convert the input signal to parallel smaller residue signals, enable to reduce the signal PAPR, decreasing the signal distortion and the Bit Error Rate (BER). Consequently, improving the received Signal-to-Noise Ratio (SNR) and enhancing the received image quality. The performance analyzed though BER, and PAPR. Moreover, image quality measurement is achieved through evaluating the Mean Squared Error (MSE), Peak Signal to Noise Ratio (PSNR), and the correlation values between the initial and retrieved images. Simulation results had shown the performance of transmission/reception model with and without RNS coding implementation.</p><p> </p>


2019 ◽  
Vol 829 ◽  
pp. 252-257
Author(s):  
Azhari ◽  
Yohanes Hutasoit ◽  
Freddy Haryanto

CBCT is a modernized technology in producing radiograph image on dentistry. The image quality excellence is very important for clinicians to interpret the image, so the result of diagnosis produced becoming more accurate, appropriate, thus minimizing the working time. This research was aimed to assess the image quality using the blank acrylic phantom polymethylmethacrylate (PMMA) (C­5H8O2)n in the density of 1.185 g/cm3 for evaluating the homogeneity and uniformity of the image produced. Acrylic phantom was supported with a tripod and laid down on the chin rest of the CBCT device, then the phantom was fixed, and the edge of the phantom was touched by the bite block. Furthermore, the exposure of the X-ray was executed toward the acrylic phantom with various kVp and mAs, from 80 until 90, with the range of 5 kV and the variation of mA was 3, 5, and 7 mA respectively. The time exposure was kept constant for 25 seconds. The samples were taken from CBCT acrylic images, then as much as 5 ROIs (Region of Interest) was chosen to be analyzed. The ROIs determination was analyzed by using the ImageJ® software for recognizing the influence of kVp and mAs towards the image uniformity, noise and SNR. The lowest kVp and mAs had the result of uniformity value, homogeneity and signal to noise ratio of 11.22; 40.35; and 5.96 respectively. Meanwhile, the highest kVp and mAs had uniformity value, homogeneity and signal to noise ratio of 16.96; 26.20; and 5.95 respectively. There were significant differences between the image uniformity and homogeneity on the lowest kVp and mAs compared to the highest kVp and mAs, as analyzed with the ANOVA statistics analysis continued with the t-student post-hoc test with α = 0.05. However, there was no significant difference in SNR as analyzed with the ANOVA statistic analysis. The usage of the higher kVp and mAs caused the improvement of the image homogeneity and uniformity compared to the lower kVp and mAs.


Sign in / Sign up

Export Citation Format

Share Document