Effect of dietary fiber and crude protein content in feed on nitrogen retention in pigs1

2012 ◽  
Vol 90 (suppl_4) ◽  
pp. 158-160 ◽  
Author(s):  
P. Patráš ◽  
S. Nitrayová ◽  
M. Brestenský ◽  
J. Heger
1982 ◽  
Vol 98 (1) ◽  
pp. 89-97 ◽  
Author(s):  
J. Wiseman ◽  
D. J. A. Cole ◽  
D. Lewis

SUMMARYThe digestible energy (DE) and metabolizable energy (ME) content of eight samples of barley, eight of wheat, four of maize and two each of oats and rye were determined using growing gilts. The DE content of barley ranged from 15·35 to 15·89 MJ/kg D.M., from 15·15 to 16·42 MJ/kg D.M. for wheat and from 16·05 to 16·47 MJ/kg D.M. for maize. DE values for the two oat samples were 12·48 and 12·74 MJ/kg D.M. and 15–04 and 15–47 MJ/kg D.M. for the two rye samples. There was a significant correlation between DE and ME:ME (MJ/kg D.M.) = 0·050 + 0·965 DE: r = 0·99; P < 0·001.The ratio ME/DE was significantly influenced by crude-protein content:ME/DE = 100–0·254 CP%: r = –0·77; P < 0·001.ME values were also corrected to zero nitrogen retention (MEno) and to 30% nitrogen retention (MEN30). The effect of such corrections was expressed as MEN0/ME and MEN30/ME. Values thus obtained were 0·98 and 1·00 respectively for the pooled values for all cereals.The data indicated that there was unlikely to be significant variation in the DE content of samples of the same cereal species, selected from commercial sources within the U.K. when evaluated under standardized experimental conditions.


Author(s):  
A.R. Mantecon ◽  
R. Pelaez ◽  
F.J. Ovejero

The effect of the level of energy intake (EI), crude protein content of the diet (CP), age and sex of growing lambs fed milk diets upon the retention of energy (ER) and nitrogen (NR) was studied.A total of 114 lambs of the Churra breed removed from their dams at birth were used. The lambs were kept in metabolism cages and during the first two days of life were bottle-fed colostrum in quantity equivalent to 40% of their birth weight.Afterwards milk-diets in which the protein-energy concentrations were between 15 and 35% were reconstituted at 180 g/kg of dry matter and given to the lambs according to the experimental design.


2013 ◽  
Vol 93 (3) ◽  
pp. 445-454 ◽  
Author(s):  
Jenalee M. Mischkolz ◽  
Michael P. Schellenberg ◽  
Eric G. Lamb

Mischkolz, J. M., Schellenberg, M. P. and Lamb, E. G. 2013. Early productivity and crude protein content of establishing forage swards composed of combinations of native grass and legume species in mixed-grassland ecoregions. Can. J. Plant Sci. 93: 445–454. We evaluated the early establishment productivity of forage swards of native, perennial, cool and warm season grasses, and legumes as they have the potential to provide non-invasive, productive, and drought resistant rangelands. Seven species with agronomic potential and a broad native geographic distribution were selected for testing including: nodding brome [Bromus anomalus (Coult.)], blue bunch wheatgrass [Pseudoregneria spicata (Pursh)], western wheatgrass [Pascopyrum smithii (Rydb.)], side oats grama [Bouteloua curtipendula (Michx.)], little blue stem [Schizachyrium scoparium (Michx.)], purple prairie clover [Dalea purpurea (Vent.)], and white prairie clover [Dalea candida (Willd.)]. Forage swards, including all seven monocultures, 21 two-species mixtures and a mixture with all species, were planted in two sites, Saskatoon and Swift Current, Saskatchewan. Western wheatgrass (WWG) had the highest overall plant density and the strongest effect on the forage yield of the forage swards; however, productivity and crude protein content were not reduced when other species were also included in the forage sward. Dalea spp. did not establish as well as the other species, but had the highest crude protein concentrations. This work provides insight into forage sward development at the establishment stage; additional work is required to determine long-term species impacts for well established forage swards.


2021 ◽  
Vol 12 (1) ◽  
pp. 78
Author(s):  
Kerensa Hawkey ◽  
Jon Stubberfield ◽  
Tim Parr ◽  
John Brameld ◽  
Andrew Salter

2006 ◽  
Vol 82 (2) ◽  
pp. 169-174 ◽  
Author(s):  
K. Engin ◽  
C. G. Carter

AbstractThis study investigated the effects of 100 g/kg increments of crude protein (approx. 250 (P25) to 550 (P55) g/kg of crude protein) in paired iso-energetic diets on the growth performance of the juvenile Australian short-finned eel (1·83 (s.e. 0·01) g average wet weight). The highest growth response was obtained with treatment P45 followed by P35, P55 and P25. It appeared that food efficiency ratio (FER) increased with increasing crude protein content in low energy diets (treatments P25 and P35). However, 100 g/kg increase in dietary crude protein content (from 450 to 550 kg crude protein per kg diet) in high energy diets resulted in lower FER for treatment P55 than for the treatment P45. The protein efficiency ratio (PER, %) was higher in low protein:low energy diets (treatments P25 and P35) than that of high protein:high energy diets (treatments P45 and P55). The protein productive values (PPV, %) for treatments followed a similar trend to PER in this experiment. The lowest PPV was obtained by the treatment P55 and it was significantly different from that of the other three treatments. A proportional increase in dietary crude protein content in paired iso-energetic diets did not significantly change the whole body protein content. However, a small increase in whole body protein content with increasing dietary crude protein in each group was detected. In conclusion, the present study showed protein sparing effects of lipids and carbohydrates in the diets of the short-finned eel. Further studies specifically investigating the effects of dietary carbohydrate to lipid ratios at different protein levels would improve diet formulation and reduce nutrient impact in intensive recirculation systems.


Sign in / Sign up

Export Citation Format

Share Document