scholarly journals Thermal stress assessment for an Arctic city in summer

2021 ◽  
Vol 11 (2) ◽  
pp. 219-231
Author(s):  
P.I. Konstantinov ◽  
◽  
M.I. Varentsov ◽  
M.Y. Grishchenko ◽  
T.E. Samsonov ◽  
...  

Despite the fact, that against the background of global warming the Russian Arctic is still a region with severe winters and cool summers; the likelihood of thermal stress conditions in summer is also increasing. At the same time, urban conditions can significantly affect the human heat perception due to the appearance of the urban heat island effect and other factors. Using the example of the city of Nadym (Yamalo-Nenets Autonomous Okrug), the authors have assessed the possibility of the summer urban heat stress occurrence and analyzed its spatial heterogeneity. The article presents the detailed modeling results of the meteorological regime of the city within the framework of the COSMO-CLM model and the assessment of bioclimatic comfort using the Physiologically Equivalent Temperature (PET) index and Universal Thermal Climate Index (UTCI). During periods of the extremely hot weather events in Nadym, the territory meso- and microclimatic mosaicism clearly manifests itself. In anthropogenically altered territories, the frequency of strong heat stress events can exceed that in the background areas by 1.7 times. Urban planning solutions should take into account not only the climatic resistance of Arctic cities to the winter cold, but also be adapted to the occurrence of summer heat.

2020 ◽  
Vol 92 (3) ◽  
pp. 361-376
Author(s):  
Monika Okoniewska

This article seeks to analyse the universal thermal climate index (UTCI, °C), in order to characterise hazards associated with high air temperature that may possibly occur in Poland around noon on very hot days. Values for the index (calculated for UTC by reference to air temperature (°C), relative humidity (%), wind speed (v∙ms-1) and cloudiness (%)) related to from the Polish cities of Kołobrzeg, Poznań and Kraków, and to the period 2001–2018. Mean values with standard deviations were calculated, with minimum and maximum values noted, amplitudes, lower and upper quartiles and the skewness coefficient. One-way analysis of variance was deployed to determine whether UTCI values at midday on very hot days differ significantly from month to month. The frequency of occurrence of different intensities of heat stress was also determined. In each case, analysis related to both the overall period and individual years. Hours around noon on very hot days were mainly associated with “moderate” or “severe” heat stress, though instances “very sever heat stress” may also arise. The greatest threat of thermal heat stress could be noted for July and August, with conditions noticeably more severe in Kraków than the other stations studied. Kołobrzeg faced the most-limited hazard associated with the occurrence of heat stress, and only in July may “very severe heat stress” appear there sporadically. In turn, Poznań – located in a region with bioclimatic conditions typical for Poland – was rather characterised by “moderate” or “severe heat stress”. Equally, on a majority of the very hot days studied, all three stations recoded above-average UTCI values, with this fact making it clear that when a high level of thermal stress arises it may be rather a country-wide phenomenon. The most stable, near-average conditions characterised May, while biothermal differentiation peaked in July and August. Analysis of variance showed that, other than in relation to April in Poznań, levels of thermal stress on hot days did not differ significantly from one month to another. Analyses of the variability to values for the multi-year universal thermal climate index revealed an increase over time for maxima, especially in Kraków. This may point to an intensified risk associated with overheating of the body, in the south of Poland in particular. In addition, calculations confirm both spatial and temporal differentiation of biothermal conditions. Years in which hot days proved particularly burdensome were 2005, 2007, 2010 and 2013.


2021 ◽  
Vol 94 (2) ◽  
pp. 201-222
Author(s):  
Milica Pecelj ◽  
Anna Błażejczyk ◽  
Nemanja Vagić ◽  
Peca Ivanović

The study deals with an assessment and interpretation of the bioclimatic conditions in Vranje (southern Serbia). The study aims at temporal distributions of bioclimatic conditions focussing on extreme thermal stress based on the Universal Thermal Climate Index (UTCI). The meteorological data required for the calculation of UTCI concern hourly (7 and 14 CET) weather data collected for the period 2000-2017. The frequency of very strong heat stress (VSHS), very strong cold stress (VSCS) and extreme cold stress (ECS) for both morning and midday hours. Furthermore, the daily difference of the UTCI hourly values (diurnal UTCI change) are specified, giving the daily variance of heat and cold stress. The results revealed the frequency of days in which thermal stress prevails for the studied period. The obtained results show an increase in extreme heat biothermal conditions, while extreme cold biothermal conditions are in decline, especially in the last 10 years. However, the frequency (the number of days) of very strong heat stress (VSHS) increased since 2007. A spectacular increase in heat stress was observed in the month of September, particularly in 2015.


2020 ◽  
Vol 24 (3) ◽  
pp. 147-160
Author(s):  
Błażejczyk Krzysztof ◽  
Nejedlik Pavol ◽  
Skrynyk Oleh ◽  
Halaś Agnieszka ◽  
Skrynyk Olesya ◽  
...  

AbstractIn mountain areas, air circulation plays a major role in the forming of the climate. This paper examines how it influences thermal stress in the northern Carpathians. The Niedźwiedź’s classification of air circulation was applied. Thermal stress was assessed by Universal Thermal Climate Index (UTCI). Daily meteorological and circulation data for the period 1986–2015 were used for 20 stations in Poland, Slovakia and Ukraine. Air circulation was found to have a significant impact on thermal stress. The highest UTCI values are observed at Ca+Ka (centre of the high and anticyclonic wedge or ridge of high pressure) and the lowest values at N+NE and W+NW circulation; at the Southward stations, UTCI is higher than in the Northward ones; thermoneutral days are more frequent on the southward than on the northward slopes; during N+NE, E+SE and W+NW circulation and for heat stress days, the greatest thermal privilege of the southward slopes is observed at E+SE, S+SW, Ca+Ka and Cc+Bc (centre of low and through of low pressure) types of circulation.


2020 ◽  
Vol 143 (1-2) ◽  
pp. 533-555
Author(s):  
A. Santos Nouri ◽  
Y. Afacan ◽  
O. Çalışkan ◽  
Tzu-Ping Lin ◽  
A. Matzarakis

AbstractThe disclosed study undertook a ‘human centred-approach’ that ascertained and categorised environmental human thermophysiological risk factors by relating them to the human biometeorological system through the use of three widely utilised energy balance model (EBM) indices, the physiologically equivalent temperature (PET), the modified PET, and the universal thermal climate index (UTCI). The disclosed assessment was carried out over the past decade (i.e., 2010–2019) with a 3-h temporal resolution for the case of Ankara through two WMO meteorological stations to compare both local urban and peri-urban environmental conditions. The study recognised extreme annual variability of human physiological stress (PS) during the different seasons as a result of the biometeorological processing of the singular variables, which in the case of average PET for both stations, varied by up to 75 °C between the winter and summer for the same annual dataset (2012). In addition, all EBMs indicated higher heat stress within the city centre that were conducive of both urban extreme heatwaves and very hot days during the summer months, with extreme heat stress levels lasting for longer than a week with PET values reaching a maximum of 48 °C. Similar cold extremes were found for the winter months, with PET values reaching − 30 °C, and average PS levels varying lower in the case of the peri-urban station.Graphical abstract


2017 ◽  
Vol 69 (3) ◽  
pp. 455-461 ◽  
Author(s):  
Milica Pecelj ◽  
Aleksandar Djordjevic ◽  
Milovan Pecelj ◽  
Jelena Pecelj-Purkovic ◽  
Dejan Filipovic ◽  
...  

This paper presents part of the research in the field of human bioclimatology and refers to biothermal conditions in different geographical environments in Serbia: an urban area and a mountain of medium height. The goal of the paper was to show bioclimatic differences during the summer between the city of Belgrade (116 m a.s.l.) and the mountain resort of Zlatibor (1498 m a.s.l.). The basic principle of bioclimatic analysis is the human heat balance between man and environment. This methodological approach is a combination of physiological and meteorological parameters that result in thermophysiological bioclimatic indices: heat load (HL) in man and the Universal Thermal Climate Index (UTCI). For this analysis, weather data for July, as the warmest month, was obtained, using daily meteorological data for the decade from 2000 to 2010. Results for July indicate a considerable difference between the two abovementioned environments. HL in Belgrade was dominated by degrees of comfort ?hot? and ?extremely hot, with the highest value of 4.540, while for Zlatibor the dominant degree of comfort was ?warm?. The UTCI in Belgrade has dominated by strong heat stress and moderate heat stress, compared to Zlatibor where the UTCI is dominated by moderate heat stress. In addition, a significant part of the monitored decade on Mt. Zlatibor was without heat stress, with the exception of 2006 and 2007, indicating favorable biothermal characteristics. Therefore, compared to Belgrade, with its considerably lower overall heat stress Zlatibor has the characteristics of a site with favorable bioclimatic qualities.


Author(s):  
Skutecki ◽  
Cymes ◽  
Dragańska ◽  
Glińska-Lewczuk ◽  
Buciński ◽  
...  

Lipid disorders, especially hypercholesterolemia, are one of the most thoroughly investigated cardiovascular risk factors. Their correlation with biometeorological conditions has been reported, with authors stressing seasonal increases of total cholesterol (TC) levels, mostly occurring in winter. This study aims at determining the correlation between the level of lipid parameters (LP) and meteorological conditions, analyzing seasonal variations in LP levels, and attempting to answer the following questions: do changes in LP levels result from the organism’s response to cold or heat stress, or are they secondary to seasonal dietary variations? An observational study comprised ambulatory patients from the city of Olsztyn (Poland), for whom laboratory test were performed in 2016–2018, with 106,325 records of TC, high-density lipoprotein (HDL), and triglycerides (TG). LP levels were matched with atmospheric conditions on the day when the test was conducted and expressed by the universal thermal climate index (UTCI). We demonstrated seasonal increases of TC in cold stress (in wintertime) and of TG in heat stress (summer). The analysis of LP levels in specific periods revealed the increase of TC levels after holidays (i.e., Christmas and Easter) in men by 4.56%, and the increase of TG levels in women by 13.46% in the same period. Our results suggest the secondary, diet-dependent underlying cause of the observed changes. This work contributes to the discussion concerning the impact of biometeorological factors on LP levels and may be of significance when planning population-dedicated preventive activities.


2021 ◽  
Vol 94 (2) ◽  
pp. 223-236
Author(s):  
Krzysztof Błażejczyk ◽  
Milica Pecelj ◽  
Pavol Nejedlik ◽  
Olesya Skrynyk ◽  
Katarina Mikulova

Mountain areas create specific features of local climates (by modification of air circulation, insolation, air temperature, precipitation, wind regime) and greatly affect ambient weather conditions which influence different kinds of human (climbing, skiing, walking, etc.). However, till now only few studies of human bioclimate in individual mountain ridges in Europe were done. The aim of the present study is to assess thermal stress features represented by Universal Thermal Climate Index (UTCI) in nine mountain systems in Central and Eastern Europe. 37 meteorological stations located at altitudes of 237-3580 m above sea level were considered. The data represent midday observational term and cover the period 2000-2017. Mean, highest and lowest annual thermal stress values and annual frequency of cold and heat stress days are analysed The conducted studies have demonstrated that in the examined mountain systems thermal stress conditions are dependent (though to a various extent) mostly on altitude (UTCI values and heat stress days decrease and number of cold stress days rise significantly due to increase of altitude). However, impacts of latitude and longitude is well seen only in altitude belt of 300-1000 m a.s.l.


2021 ◽  
Vol 13 (15) ◽  
pp. 8595
Author(s):  
Lindita Bande ◽  
Abeer Alshamsi ◽  
Anoud Alhefeiti ◽  
Sarah Alderei ◽  
Sebah Shaban ◽  
...  

The city of Al Ain (Abu Dhabi, UAE) has a mainly low rise residential buildings. Villas as part of a compound or separate units represent the majority of the residential areas in the city. Due to the harsh hot arid climate of Al Ain, the energy demand for the cooling load is quite high. Therefore, it is relevant finding new retrofit strategies that are efficient in reducing the cooling load of the villas. The aim of this study is to analyze one particular strategy (parametric shading structure) in terms of design, construction, cost, energy impact on the selected villa. The main data for this study is taken from the local sources. There are six steps followed in this analysis: case study analysis; climate analysis; parametric structure and PV panels; building energy consumption and outdoor thermal comfort; modelling, simulation, and validation; materials, construction, and cost evaluation. The model of the villa was validated for the full year 2020 based on the electricity bills obtained. After adding the parametric design structure, the reduction after shading is approximately 10%. Meanwhile the UTCI (Universal Thermal Climate Index) dropped from extreme heat stress to strong heat stress (average for the month of March and September). These findings are promising in the retrofit industry due to the advanced calculations used to optimize the parametric design structure.


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 46
Author(s):  
Reija Ruuhela ◽  
Athanasios Votsis ◽  
Jaakko Kukkonen ◽  
Kirsti Jylhä ◽  
Susanna Kankaanpää ◽  
...  

Urbanization and ongoing climate change increase the exposure of the populations to heat stress, and the urban heat island (UHI) effect may magnify heat-related mortality, especially during heatwaves. We studied temperature-related mortality in the city of Helsinki—with urban and suburban land uses—and in the surrounding Helsinki-Uusimaa hospital district (HUS-H, excluding Helsinki)—with more rural types of land uses—in southern Finland for two decades, 2000–2018. Dependence of the risk of daily all-cause deaths (all-age and 75+ years) on daily mean temperature was modelled using the distributed lag nonlinear model (DLNM). The modelled relationships were applied in assessing deaths attributable to four intensive heatwaves during the study period. The results showed that the heat-related mortality risk was substantially higher in Helsinki than in HUS-H, and the mortality rates attributable to four intensive heatwaves (2003, 2010, 2014 and 2018) were about 2.5 times higher in Helsinki than in HUS-H. Among the elderly, heat-related risks were also higher in Helsinki, while cold-related risks were higher in the surrounding region. The temperature ranges recorded in the fairly coarse resolution gridded datasets were not distinctly different in the two considered regions. It is therefore probable that the modelling underestimated the actual exposure to the heat stress in Helsinki. We also studied the modifying, short-term impact of air quality on the modelled temperature-mortality association in Helsinki; this effect was found to be small. We discuss a need for higher resolution data and modelling the UHI effect, and regional differences in vulnerability to thermal stress.


2010 ◽  
Vol 14 (1) ◽  
pp. 103-109 ◽  
Author(s):  
Danuta Idzikowska

Abstract The aim of this study was to examine the main features of the bioclimatic conditions of three European cities using a new Universal Thermal Climate Index. Daily values of meteorological variables for 12 UTC for the cities for 1990-2001 were used in the study. Using the frequency of UTCI and one-way Anova, the results showed that in all the three cities “no thermal stress” dominated throughout the year. “Extreme” values of heat as well as “cold stress” were observed but in none of the cities “extreme cold stress” occurred. The values of UTCI differed for all the three cities in each studied year. The cities differed from each other in each month during the whole year with the exception of spring - March and April.


Sign in / Sign up

Export Citation Format

Share Document