scholarly journals Underground Research Laboratory: Overcoming Uncertainties in the Assessment of Seismic Conditions for the Yeniseiskiy Site

2021 ◽  
Vol 16 (3) ◽  
pp. 80-93
Author(s):  
S. B. Kishkina ◽  
◽  
V. N. Tatarinov ◽  
E. G. Bugaev ◽  
V. S. Gupalo ◽  
...  

The article presents the basic principles and an algorithm allowing to arrange a seismological monitoring system for the Yeniseiskiy site selected for deep geological disposal of high-level waste. It describes the seismological monitoring system developed by NO RAO in 2018 also briefly considering the seismotectonic conditions of the area. The paper describes the process that has been followed to select the corresponding sites and equipment layouts in the areas fitted with seismological monitoring stations with relevant instrumental characteristics being provided. It shows that considering the current stage of research, higher sensitivity was provided in the area as compared to the one associated with available regional seismological observations. It demonstrates the efficiency of the built-up monitoring system with its sensitivity assessment provided both based on the calculated model and under real conditions. The long-term safety assessment performed for such a facility relies upon many factors with the seismic hazard level within the area of the monitored facility also taken into consideration. To provide most reliable evaluation of seismic parameters, continuous seismological monitoring should be performed over a several years’ period along with the sensitivity assessment of the selected monitoring system. The seismological monitoring system should focus not only on the general study of the monitored territory, but also on the areas assumed as zones of most probable seismic event occurrence, i.e. areas involving tectonic faults. The relevance of this task has been repeatedly emphasized in the course of multiple discussions on this issue featuring the representatives from SC Rosatom and the Scientific and Engineering Centre for Nuclear and Radiation Safety. The monitoring system fitted within the repository area meets relevant regulatory requirements. In accordance with the existing requirements, to reduce the uncertainties in the seismic hazard assessment of the territory, the implementation of certain measures was recommended during further development of the local seismological monitoring network to identify and assess the potential of hazardous geodynamic zones.

Author(s):  
Želimir Veinović ◽  
Biljana Kovačević Zelić ◽  
Dubravko Domitrović

Management of Spent Nuclear Fuel (SF) and High-Level Waste (HLW) is one of the most important and challenging problems of the modern world. Otherwise a clean, cheap, constant, and secure way to produce electricity, nuclear power plants create large amounts of highly hazardous waste. Repositories—deep Geological Disposal Facilities (GDF)—for these types of waste must prevent radionuclides from reaching the biosphere, for up to 1,000,000 years, migrating from a deep (more than 300m), stable geological environment. At present, there are no operating GDFs for SF and/or HLW, mostly due to the difficult and complex task of preparing safety cases and licensing. The purpose of this chapter is to validate the generic R&D activities in this area and present alternative concepts of Radioactive Waste (RW) management: retrievability, reversibility, regional GDFs, long-term storage, and deep borehole disposal, demonstrating the main engineering tasks in solving the problem of RW management and disposal.


MRS Advances ◽  
2016 ◽  
Vol 1 (63-64) ◽  
pp. 4185-4191 ◽  
Author(s):  
Sophia Necib ◽  
Christian Bataillon ◽  
Sylvie Daumas ◽  
Michel L. Schlegel ◽  
Didier Crusset

ABSTRACTCarbon steel (C-steel) is studied to be the reference material for the metallic components in the high level waste (HLW) repository concepts of several European countries such as France, Switzerland, Belgium.Electrochemical impedance spectroscopy (EIS) was performed over a period of 7 years, to determine the instantaneous corrosion rate (CR) of carbon steel (C-steel) in contact with clay porewater in diffusive regime. The study was conducted at the Mont Terri underground research laboratory (URL) located in Switzerland. The test chamber was at a depth of 8 m under anoxic conditions at 90°C in a vertical and descending borehole drilled in Opalinus clay (OPA). Microbial and chemical investigations were conducted on porewater in contact with C-steel as well as directly on C-steel surface further to dismantling.The results showed clearly a decrease of the CR over time followed by a steady state below 1 µm/year. Sulphate and thiosulphate reducing bacteria were observed in porewater and at the metal surface, with a higher concentration of mesophilic and thermophilic bacteria respectively. The metal surface characterizations revealed the presence of magnetite, mackinawite, hydroxychloride and siderite with local traces of oxidizing species such as goethite.


2006 ◽  
Vol 94 (9-11) ◽  
Author(s):  
Michael H. Bradbury ◽  
B. Baeyens

The retention characteristics of the bentonite near-field engineered barrier proposed in most of the concepts for the deep geological disposal of high-level waste and spent fuel are an important component in repository performance assessment studies. Montmorillonite generally constitutes 65 to 90 wt.% of the bentonite. Sorption edge measurements have been performed at trace concentrations for the actinides Am(III), Np(V) and Pa(V) on purified and conditioned SWy-1 montmorillonite under anoxic, carbonate free conditions. To the best of the author´s knowledge, this is the first time a sorption data set has been measured for


2020 ◽  
Vol 49 (3) ◽  
pp. 13-18
Author(s):  
Dimitar Antonov ◽  
Madlena Tsvetkova ◽  
Doncho Karastanev

In Bulgaria, from the preliminary analyses performed for site selection of deep geological disposal of high-level waste (HLW) and spent fuel (SF), it was concluded that the most promising host rocks are the argillaceous sediments of the Sumer Formation (Lower Cretaceous), situated in the Western Fore-Balkan Mts. The present paper aims to compare the transport of three major radionuclides from a hypothetical radioactive waste disposal facility, which incorporates an engineering barrier of bentonite into the argillaceous (marl) medium. The simulations were performed by using HYDRUS-1D computer programme. The results are used for a preliminary estimation of argillaceous sediments as a host rock for geological disposal of HLW.


Author(s):  
Patrice Voizard ◽  
Stefan Mayer ◽  
Gerald Ouzounian

Over the past 15 years, the French program on deep geologic disposal of high level and long-lived radioactive waste has benefited from a clear legal framework as the result of the December 30, 1991 French Waste Act. To fulfil its obligations stipulated in this law, Andra has submitted the “Dossier 2005 Argile” (clay) and “Dossier 2005 Granite” to the French Government. The first of those reports presents a concept for the underground disposal of nuclear waste at a specific clay site and focuses on a feasibility study. Knowledge of the host rock characteristics is based on the investigations carried out at the Meuse/Haute Marne Underground Research Laboratory. The repository concept addresses various issues, the most important of which relates to the large amount of waste, the clay host rock and the reversibility requirement. This phase has ended upon review and evaluation of the “Dossier 2005” made by different organisations including the National Review Board, the National Safety Authority and the NEA International Review Team. By passing the “new”, June 28, 2006 Planning Act on the sustainable management of radioactive materials and waste, the French parliament has further defined a clear legal framework for future work. This June 28 Planning Act thus sets a schedule and defines the objectives for the next phase of repository design in requesting the submission of a construction authorization application by 2015. The law calls for the repository program to be in a position to commission disposal installations by 2025.


Author(s):  
Stan Gordelier ◽  
Pa´l Kova´cs

The world is facing energy difficulties for the future, in terms of security of supply and climate change issues. Nuclear power is virtually carbon free and it contributes to energy security, being a quasi-domestic source. Whilst it cannot provide a complete answer to these challenges, it is certainly capable of providing a significant component of the answer. However, nuclear power remains controversial. In order to gain public acceptance, it is widely recognised that a number of key issues need to be addressed, amongst which is resolution of the high-level radioactive waste (HLW) (including spent fuel) disposal issue. This is an important issue for all countries with an existing nuclear programme, whether or not it is intended that nuclear power should be phased out or expanded — the waste already exists and must be managed in any event. It is equally important for countries planning a new nuclear power programme where none has previously existed. Since nuclear power was first developed over fifty years ago, HLW arisings have been stored as an interim measure. It is widely believed by experts (though not by many opponents of the nuclear industry, nor by the public) that deep geological disposal, after a reasonable cooling time in interim storage, is technically feasible and constitutes a safe option [1] at an acceptable cost. The total volume of HLW from nuclear reactors is relatively small. A key issue, however, is the time-scale for developing such a final disposal solution. Considerations of security and inter-generational equity suggest that geological disposal should be implemented as soon as possible irrespective of whether or not new arisings are created. The question of managing HLW is not necessarily related to the issue of building new nuclear power stations. However, many opponents argue that there has been insufficient demonstration of the long-term safety of deep geological disposal. The same opponents also argue that there should be a moratorium on building new nuclear power plants (NPPs) until the issue of long-term management of HLW is resolved. These arguments have a powerful influence on public opinion towards both the construction of a waste repository and the building of new NPPs. The intent of this paper (developed from the current OECD NEA study on “Timing of High Level Waste Disposal”) is to identify and discuss some of the factors influencing the timing of the implementation of a HLW disposal strategy and to demonstrate to decision makers how these factors are affecting country strategies, based on current experience. Determining an optimum timescale of HLW disposal may be affected by a wide range of factors. The study examines how social acceptability, technical soundness, environmental responsibility and economic feasibility impact on the timing of HLW disposal and can be balanced in a national radioactive waste management strategy taking the social, political and economic environment into account. There is clear evidence that significant fractions of the public still have serious misconceptions with respect to the issues surrounding nuclear waste. The nuclear industry, together with governments in those countries who would like a component of nuclear power in their energy mix, has a responsibility for and a significant challenge in presenting its case to the public.


2021 ◽  
Vol 7 ◽  
pp. 21
Author(s):  
Léa Tillard ◽  
Xavier Doligez ◽  
Gérald Senentz ◽  
Marc Ernoult ◽  
Jiali Liang ◽  
...  

This article presents an assessment of fuel cycle parameter impact on waste production through the prism of vitrified container and minor actinide masses, using a scenario simulated with the CLASS code. The number of canister introduces a new focus on waste production estimation for a nuclear fleet, as it helps to set the repository size for deep geological disposal of high level waste. To evaluate the number of canisters, dedicated developments to model a simplified waste vitrification unit in the CLASS package are presented. It relies on artificial neural network estimations of decay heat, α radiation and mass content, for different material flow coming from reprocessing and sent to vitrification. Then, the studied scenario considers a transition from a PWRs plutonium mono-recycling fleet to a plutonium multi-recycling fleet. Vitrified waste container production is calculated as a function of different material reprocessing options. Simulations shows that up to 19% variation may be observed (in 2060) in canisters’ total number depending on the different assumptions. Impact of vitrification parameters such as the size of buffer before vitrification is also analysed and the importance of mixing material coming from MOX and MIX spent fuels with material from UOX spent fuels is clearly established.


2020 ◽  
Vol 6 ◽  
pp. 22
Author(s):  
Bálint Nős

Countries operating nuclear power plants have to deal with the tasks connected to spent fuel and high-level radioactive waste management. There is international consensus that, at this time, deep geological disposal represents the safest and most sustainable option as the end point of the management of high-level waste and spent fuel considered as waste. There are countries with longer timescale for deep geological repository (DGR) implementation, meaning that the planned date of commissioning of their respective DGRs is around 2060. For these countries cooperation, knowledge transfer, participation in RD&D programmes (like EURAD) and adaptation of good international practice could help in implementing their own programmes. In the paper the challenges and needs of a country with longer implementation timescale for DGR will be introduced through the example of Hungary.


Sign in / Sign up

Export Citation Format

Share Document