Geological Repository for Nuclear High Level Waste in France From Feasibility to Design Within a Legal Framework

Author(s):  
Patrice Voizard ◽  
Stefan Mayer ◽  
Gerald Ouzounian

Over the past 15 years, the French program on deep geologic disposal of high level and long-lived radioactive waste has benefited from a clear legal framework as the result of the December 30, 1991 French Waste Act. To fulfil its obligations stipulated in this law, Andra has submitted the “Dossier 2005 Argile” (clay) and “Dossier 2005 Granite” to the French Government. The first of those reports presents a concept for the underground disposal of nuclear waste at a specific clay site and focuses on a feasibility study. Knowledge of the host rock characteristics is based on the investigations carried out at the Meuse/Haute Marne Underground Research Laboratory. The repository concept addresses various issues, the most important of which relates to the large amount of waste, the clay host rock and the reversibility requirement. This phase has ended upon review and evaluation of the “Dossier 2005” made by different organisations including the National Review Board, the National Safety Authority and the NEA International Review Team. By passing the “new”, June 28, 2006 Planning Act on the sustainable management of radioactive materials and waste, the French parliament has further defined a clear legal framework for future work. This June 28 Planning Act thus sets a schedule and defines the objectives for the next phase of repository design in requesting the submission of a construction authorization application by 2015. The law calls for the repository program to be in a position to commission disposal installations by 2025.

2006 ◽  
Vol 932 ◽  
Author(s):  
Laurent De Windt ◽  
Stéphanie Leclercq ◽  
Jan van der Lee

ABSTRACTThe long-term behaviour of vitrified high-level waste in an underground clay repository was assessed by using the reactive transport model HYTEC with respect to silica diffusion, sorption and precipitation processes. Special attention was given to the chemical interactions between glass, corroded steel and the host-rock considering realistic time scale and repository design. A kinetic and congruent dissolution law of R7T7 nuclear glass was used assuming a first-order dissolution rate, which is chemistry dependent, as well as a long-term residual rate. Without silica sorption and precipitation, glass dissolution is diffusion-driven and the fraction of altered glass after 100,000 years ranges from 5% to 50% depending on the fracturation degree of the glass block. Corrosion products may limit glass dissolution by controlling silica diffusion, whereas silica sorption on such products has almost no effect on glass durability. Within the clayey host-rock, precipitation of silicate minerals such as chalcedony may affect glass durability much more significantly than sorption. In that case, however, a concomitant porosity drop is predicted that could progressively reduce silica diffusion and subsequent glass alteration.


Author(s):  
Pablo C. Florido ◽  
Dari´o Delmastro ◽  
Daniel Brasnarof ◽  
Osvaldo E. Azpitarte

Argentina is performing CAREM X Nuclear System Case Study based on CAREM nuclear reactor and Once Through Fuel Cycle, using SIGMA for enriched uranium production, and a deep geological repository for final disposal of high level waste after surface intermediate storage in horizontal natural convection silos, to verify INPRO (International Project on Innovative Nuclear Reactors and Fuel Cycles) methodology. Projections show that developing countries could play a crucial role in the deployment of nuclear energy, in the next fifty years. This case study will be highly useful for checking INPRO methodology for this scenario. In this contribution to ICONE 12, the preliminary findings of the Case Study are presented, including proposals to improve the INPRO methodology.


2019 ◽  
Vol 98 ◽  
pp. 10005
Author(s):  
Marek Pękala ◽  
Paul Wersin ◽  
Veerle Cloet ◽  
Nikitas Diomidis

Radioactive waste is planned to be disposed in a deep geological repository in the Opalinus Clay (OPA) rock formation in Switzerland. Cu coating of the steel disposal canister is considered as potential a measure to ensure complete waste containment of spent nuclear fuel (SF) and vitrified high-level waste (HLW) or a period of 100,000 years. Sulphide is a potential corroding agent to Cu under reducing redox conditions. Background dissolved sulphide concentrations in pristine OPA are low, likely controlled by equilibrium with pyrite. At such concentrations, sulphide-assisted corrosion of Cu would be negligible. However, the possibility exists that sulphate reducing bacteria (SRB) might thrive at discrete locations of the repository’s near-field. The activity of SRB might then lead to significantly higher dissolved sulphide concentrations. The objective of this work is to employ reactive transport calculations to evaluate sulphide fluxes in the near-field of the SF/HLW repository in the OPA. Cu canister corrosion due to sulphide fluxes is also simplistically evaluated.


2015 ◽  
Vol 79 (6) ◽  
pp. 1665-1673 ◽  
Author(s):  
Magnus Kronberg ◽  
Jan Gugala ◽  
Keijo Haapala

AbstractOver the last five decades private and national energy programmes worldwide have been producing a variety of radioactive wastes. One of the safest ways of disposing of this waste is to bury it deep underground in purpose-built geological disposal facilities. Currently, there is no operating geological repository in Europe for high-level waste but the goal of the IGD-TP is that the first repository shall be fully operational before the year 2025. Several studies and experiments are ongoing at various potential repository sites in Europe with the goal to establish general approaches that can be adapted for any country in need of a geological repository.The Swedish Nuclear Fuel and Waste Management Co (SKB) in Sweden and Posiva Oy in Finland are developing a method for geological disposal of high-level long-lived nuclear waste in crystalline rock, the KBS-3 method. KBS-3V (vertical) is both organizations reference design, but KBS-3H (horizontal) emplacement is also being researched as a potential alternative. Of high importance in the development is demonstrating the technical feasibilityin situof safe and reliable construction, manufacturing, disposal and sealing of such geological disposal facilities. Parts of these demonstrations are carried out under the framework of EurAtom/FP7 and one of these projects is the LUCOEX project where SKB is demonstrating horizontal emplacement, the Multi Purpose Test (MPT), and Posiva is demonstrating vertical buffer installation processes.The MPT includes the key components of the horizontal design and comprises all essential steps; manufacturing of the full-scale components, their assembly, installation in the drift and monitoring of the early buffer evolution. The MPT installation was successfully performed in late 2013. By combining the components, an initial verification of the design implementation has been achieved. At the same time, integrating the components has meant the recognition of some design weaknesses and the design will be updated accordingly.Posiva's KBS-3V buffer installation equipment that places buffer blocks with high precision in vertical deposition holes is currently being developed and will be tested during 2014 and 2015 in real underground conditions. The machine uses vacuum lifting tools for moving the buffer blocks and laser scanning technology to position both the machine and blocks. Functionality of the concept and equipment selected will be confirmed by the tests and the installation tests will provide important information about the suitability of the selected buffer dimensions and tolerances.


2000 ◽  
Vol 663 ◽  
Author(s):  
I.G. McKinley ◽  
H. Kawamura ◽  
H. Tsuchi

ABSTRACTMost national high-level waste (HLW) disposal programs actually reflect, or are based on, concepts which were developed during the '70s or early '80s. Although suitable for demonstration of concept feasibility, designs of the engineered barrier system (EBS) do not take into account the tremendous developments in system understanding and materials technology over the last two decades, the practicality (and cost) of their quality assurance and implementation on an industrial scale and the transparency of the demonstration of the safety case. In many ways, due to the increased significance of popular acceptance over the last decade, the last point may be of particular relevance.This paper reviews the work already carried out on “2nd generation” concepts and extends this to identify the key attributes of an ideal design for the specific case of disposal of vitrified HLW from reprocessing in a “wet” host rock (either crystalline or sedimentary). Based on the concept developed, key R&D requirements are identified.


2021 ◽  
Vol 16 (3) ◽  
pp. 80-93
Author(s):  
S. B. Kishkina ◽  
◽  
V. N. Tatarinov ◽  
E. G. Bugaev ◽  
V. S. Gupalo ◽  
...  

The article presents the basic principles and an algorithm allowing to arrange a seismological monitoring system for the Yeniseiskiy site selected for deep geological disposal of high-level waste. It describes the seismological monitoring system developed by NO RAO in 2018 also briefly considering the seismotectonic conditions of the area. The paper describes the process that has been followed to select the corresponding sites and equipment layouts in the areas fitted with seismological monitoring stations with relevant instrumental characteristics being provided. It shows that considering the current stage of research, higher sensitivity was provided in the area as compared to the one associated with available regional seismological observations. It demonstrates the efficiency of the built-up monitoring system with its sensitivity assessment provided both based on the calculated model and under real conditions. The long-term safety assessment performed for such a facility relies upon many factors with the seismic hazard level within the area of the monitored facility also taken into consideration. To provide most reliable evaluation of seismic parameters, continuous seismological monitoring should be performed over a several years’ period along with the sensitivity assessment of the selected monitoring system. The seismological monitoring system should focus not only on the general study of the monitored territory, but also on the areas assumed as zones of most probable seismic event occurrence, i.e. areas involving tectonic faults. The relevance of this task has been repeatedly emphasized in the course of multiple discussions on this issue featuring the representatives from SC Rosatom and the Scientific and Engineering Centre for Nuclear and Radiation Safety. The monitoring system fitted within the repository area meets relevant regulatory requirements. In accordance with the existing requirements, to reduce the uncertainties in the seismic hazard assessment of the territory, the implementation of certain measures was recommended during further development of the local seismological monitoring network to identify and assess the potential of hazardous geodynamic zones.


2019 ◽  
Vol 9 (12) ◽  
pp. 2437 ◽  
Author(s):  
Sebastian Wegel ◽  
Victoria Czempinski ◽  
Pao-Yu Oei ◽  
Ben Wealer

The nuclear industry in the United States of America has accumulated about 70,000 metric tons of high-level nuclear waste over the past decades; at present, this waste is temporarily stored close to the nuclear power plants. The industry and the Department of Energy are now facing two related challenges: (i) will a permanent geological repository, e.g., Yucca Mountain, become available in the future, and if yes, when?; (ii) should the high-level waste be transported to interim storage facilities in the meantime, which may be safer and more cost economic? This paper presents a mathematical transportation model that evaluates the economic challenges and costs associated with different scenarios regarding the opening of a long-term geological repository. The model results suggest that any further delay in opening a long-term storage increases cost and consolidated interim storage facilities should be built now. We show that Yucca Mountain’s capacity is insufficient and additional storage is necessary. A sensitivity analysis for the reprocessing of high-level waste finds this uneconomic in all cases. This paper thus emphasizes the urgency of dealing with the high-level nuclear waste and informs the debate between the nuclear industry and policymakers on the basis of objective data and quantitative analysis.


1992 ◽  
Vol 294 ◽  
Author(s):  
A. Saotome ◽  
K. Hara ◽  
J. Okamoto

ABSTRACTShaft sealing in a high-level waste(HLW) disposal system functions to minimize the water flow passage, and retard the radionuclide transport from the repository to the accessible environment. It is important to estimate the radionuclide migration along the sealed shaft from the viewpoint of the design and the performance assessment of the sealing system.This study presents the results of sensitivity analyses on the radionuclide migration in the vicinity of the access shaft of a repository in order to evaluate the effects of the length of a plug, as well as the number of plugs, and curtain grouts.In this study, the upward hydraulic gradient of the groundwater flow along shafts was used, based on transient coupled thermo-hydraulic analyses around a repository. Hydraulic conductivities of the backfill material and the disturbed zones around the shaft tunnels were also assumed to be one order and two orders of magnitude higher than that of the host rock, respectively.The results show that the velocity of the groundwater within the shaft and the disturbed zone is reduced by a factor of one third by installing a few plugs into the shaft filled with backfill material. The curtain grouts have the effect of retarding the radionuclide migration from the repository to the ground surface at a factor of approximately five. A few plug installations have the same effect. The sealing system properly constituted with backfill, plugs, and grouts can provide the same performance as the original host rock.


2015 ◽  
Vol 79 (6) ◽  
pp. 1317-1325 ◽  
Author(s):  
D. Justinavicius ◽  
P. Poskas

AbstractCorrosion of steel canisters, disposed of in a repository for high-level waste (HLW), leads to generation of hydrogen gas for a long period after the repository's closure. The accumulation of hydrogen gas may lead to significant desaturation and unacceptable build-up of pressure in the backfilled disposal tunnels if the gas cannot escape through the low-permeability host rock. Consequently, the investigation of gas migration is of high relevance in the assessment of the repository's performance.In this paper, the results of numerical investigations on gas migration performed using the computer code TOUGH2 (USA) are presented. The objective was to investigate migration of gas generated in a single disposal tunnel of a conceptual geological repository in a clay formation, which was suggested for benchmark studies in the European Commission project FORGE (Fate Of Repository GasEs). The analysis was focused on evaluation of the impact of an initial temperature in the repository and of different tortuosity models on gas migration. It was revealed that gas migration results were dependent on tortuosity model, while temperature variation in the repository had minor impact.


Sign in / Sign up

Export Citation Format

Share Document