scholarly journals Biomechanical evaluation of the pedicle screw insertion depth and role of cross-link in thoracolumbar junction fracture surgery: a finite element study under compressive loads

2021 ◽  
Vol 27 (3) ◽  
pp. 25-32
Author(s):  
Oleksii S. Nekhlopochyn ◽  
Vadim V. Verbov ◽  
Michael Yu. Karpinsky ◽  
Oleksandr V. Yaresko

Introduction. The thoracolumbar junction is one of the most frequently damaged parts of the human spine when exposed to a traumatic factor. Corpectomy in combination with posterior decompression and restoration of the spinal support function is often performed using an interbody implant and posterior transpedicular stabilization to achieve adequate decompression and stabilization in severe traumatic injuries of this level. The surgery of this type is characterized by significant instability of the operated segment and determines increased requirements for the rigidity and reliability of posterior fixation. We have modeled the situation of a two-level corpectomy with subsequent replacement of bodies with a mesh implant and posterior transpedicular stabilization with 8 screws. Objective. To study the stress-strain state of the thoracolumbar spine model after resection of the Th12-L1 vertebrae with different variants of transpedicular fixation under the influence of a compressive load. Materials and methods. A mathematical finite element model of the human thoracolumbar spine has been developed, the components of which are the Th9 ‒ Th11 and L2-L5 vertebrae (vertebrae Th12-L1 are removed), as well as elements of hardware - interbody support and transpedicular system. Four variants of transpedicular fixation were modeled: using short screws and long screws passing through the cortical layer of anterior wall of vertebral body, as well as two cross links and without them. The stress-strain state of the models was studied under the influence of a vertical compressive distributed load, which was applied to the body of the Th9 vertebra and its articular surfaces. The load value was 350 N, corresponding to the weight of the upper body. Results. d It was found that transpedicular fixation of the thoracolumbar vertebrae with the use of long screws reduces the level of tension in the bone elements of the models. In the area of screw entry into the pedicle of the T10, T11, L2 and L3 vertebral arch, the load when using short screws was 3.1, 1.7, 3.9 and 12.1 MPa, respectively, when using bicortically installed screws - 2.9, 1.8, 3.8 and 10.6 MPa. The addition of two cross-links also reduces the maximum load values in critical areas of the model to a certain extent. In case of short screws combination and two cross-links, the load in these areas was 2.8, 1.7, 3.6 and 11.5 MPa, when using bicortical screws and cross-links - 2.8, 1.6, 3.3 and 9.3 MPa. The study of the stress-strain state of other parts of the model revealed a similar trend. Conclusions. The use of long screws with fixation in the cortical bone of anterior part of the vertebral bodies reduces the level of tension in the bone elements of the models. The use of cross links provides greater rigidity to the transpedicular system, that also reduces the tension in the bone tissue.

Author(s):  
A.Yu. Burtsev ◽  
◽  
V.V. Glagolev ◽  
A.A. Markin ◽  
◽  
...  

The subcritical elastoplastic deformation and the fracturing of an element of a finite element continuum in the Ansys Workbench complex are considered. When solving the elastoplastic problem of the subcritical deformation, a finite element with the failure criterion reached is selected. In a pre-fracture state of the element, the nodal forces provided by the interaction with an adjacent element are determined using the Ansys Workbench internal procedure. The following step is the consideration of the varying stress-strain state of the body during the element destruction. The elastoplastic problem is solved in the conditions of simple unloading of the body surface adjacent to the destructible element while maintaining the external load corresponding to the destruction initiation. When implementing the local unloading, a possibility of the new plastic region formation and the partial unloading are studied. As a result, the stress-strain state of the body at the beginning of local unloading is not the same as that at the end of the process. The proposed approach differs from the “element killing” procedure when the element stiffness after the failure criterion reached is assumed to be close to zero. The paper provides solutions to the problems of deformation of elastic and elastoplastic plates with a side cut taking into account their element destruction.


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


Author(s):  
V. I. Tarichko ◽  
P. I. Shalupina

The paper focuses on a method for assessing the dynamic loading of the frame of a special wheeled chassis when it moves on roads of various categories. Based on the developed finite element model of the frame, we obtained and analyzed full-size patterns of the stress-strain state of the frame and oscillograms of equivalent stresses in the most loaded zones of the frame.


2020 ◽  
pp. 117-123
Author(s):  
Sergii Trubachev ◽  
Olga Alexeychuk

The bracket is used to attach the gondola, which is an important part of the aircraft power plant. The gondola is constantly subjected to heavy loads when starting the engine, in flight, takeoff and landing. Therefore, the strength of the brackets of its attachment is very important. The geometric 3D model was built in SOLIDWORKS and imported for further calculations in ANSYS. A grid of tetraidal elements was created by the program. Thanks to the obtained FE (finite element) grid, we make the calculation of the stress strain state. Comments are provided on changes in the geometric and mass parameters of the bracket, based on the results of calculations.


Vestnik MGSU ◽  
2020 ◽  
pp. 452-461
Author(s):  
Emil Imran Оglu Alirzaev ◽  
Marina E. Dement'eva

Introduction. One of the serious problems in the construction of underground structures in a dense urban area is the occurrence of excess deformations of the foundations of operating buildings that fall into the zone of influence of underground construction. The subject of the study was the calculated justification of the modern technology of compensatory injection. The relevance of the task is determined by the fact that the choice of the most effective protection technology should be based not only on a comparison of technological precipitation with maximum permissible values, but also on the assessment of the possibility of monitoring and controlling the movements of the foundations of buildings and structures during construction and subsequent operation. The purpose of the study was to compare various methods of protecting the foundations of existing buildings and structures and justify the selection of the most effective of them for further implementation and dissemination in the design and construction of urban underground structures. Materials and methods. On the basis of the survey data of the operated building falling into the impact zone of excavation of the pit for the construction of the installation and shield chamber of the subway, the parameters of the stress-strain state of its foundations are studied by mathematical modeling. The problem was solved by the finite element method based on the software and computer complex Z_Soil v.18.24. Results. Based on the analysis of the results of the examination of the administrative building using the finite element method, a change in the parameters of the stress-strain state of the foundations was modeled with various technologies for strengthening it. In the course of solving the geotechnical problem, it was found that the minimum impact on the foundations of the building during the construction of the pit was obtained in the method of compensatory injection. The system of criteria for making a decision on choosing an effective way to ensure the suitability of buildings in the underground construction zone for operation is substantiated. Conclusions. The results of this work can be used to justify the choice of technology for prevention and control of excess deformations of foundations. The function for calculating the volume of injected material in the Z_Soil software and computer complex can be used to justify the consumption of materials and the economic efficiency of the technological solution.


Author(s):  
V. F. Danenko ◽  
◽  
L. M. Volgograd State Technical University

A computer finite-element simulation of the stress-strain state of elements of a closed rope under conditions of joint tension and torsion has been carried out. The redistribution of axial forces and torques in the cross sections of layers during rotation of the rope under the influence of external torque was determined, which leads to a decrease in the safety margin of the rope, a violation of the compatibility of axial and radial movements in the layers and the structural integrity of the rope in the form of wire breakage of the outer layer.


2019 ◽  
Author(s):  
A. A. Sosnin ◽  
N. A. Bogdanova ◽  
S. G. Zhilin ◽  
O. N. Komarov

Sign in / Sign up

Export Citation Format

Share Document