scholarly journals An Investigation of Rolling-Motion Reduction for a Box-Shaped Floating Body in Waves

2004 ◽  
Vol 2004 (195) ◽  
pp. 179-184
Author(s):  
Seiya Yamashita ◽  
Haruaki Sakashita ◽  
Tohru Takahashi ◽  
Atsushi Arami
Keyword(s):  
1991 ◽  
Vol 19 (3) ◽  
pp. 142-162 ◽  
Author(s):  
D. S. Stutts ◽  
W. Soedel ◽  
S. K. Jha

Abstract When measuring bearing forces of the tire-wheel assembly during drum tests, it was found that beyond certain speeds, the horizontal force variations or so-called fore-aft forces were larger than the force variations in the vertical direction. The explanation of this phenomenon is still somewhat an open question. One of the hypothetical models argues in favor of torsional oscillations caused by a changing rolling radius. But it appears that there is a simpler answer. In this paper, a mathematical model of a tire consisting of a rigid tread ring connected to a freely rotating wheel or hub through an elastic foundation which has radial and torsional stiffness was developed. This model shows that an unbalanced mass on the tread ring will cause an oscillatory rolling motion of the tread ring on the drum which is superimposed on the nominal rolling. This will indeed result in larger fore-aft than vertical force variations beyond certain speeds, which are a function of run-out. The rolling motion is in a certain sense a torsional oscillation, but postulation of a changing rolling radius is not necessary for its creation. The model also shows the limitation on balancing the tire-wheel assembly at the wheel rim if the unbalance occurs at the tread band.


Kerntechnik ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. 82-87
Author(s):  
C. Wang ◽  
E. Shi ◽  
L. Sun ◽  
W. Chen

1988 ◽  
Vol 24 (4) ◽  
pp. 238 ◽  
Author(s):  
S.S. Tsao ◽  
D.R. Myers ◽  
G.K. Celler

2021 ◽  
Vol 221 ◽  
pp. 108555
Author(s):  
Wen-hua Wang ◽  
Xiao-ming Ran ◽  
Zi-han Zhao ◽  
Yi Huang

Author(s):  
Qiang Cheng ◽  
Baobao Qi ◽  
Hongyan Chu ◽  
Ziling Zhang ◽  
Zhifeng Liu ◽  
...  

The combination of sliding/rolling motion can influence the degree of precision degradation of ball screw. Precision degradation modeling and factors analysis can reveal the evolution law of ball screw precision. This paper presents a precision degradation model for factors analysis influencing precision due to mixed sliding-rolling motion. The precision loss model was verified through the comparison of theoretical models and experimental tests. The precision degradation due to rolling motion between the ball and raceway accounted for 29.09% of the screw precision loss due to sliding motion. Additionally, the total precision degradation due to rolling motion accounted for 21.03% of the total sliding precision loss of the screw and nut, and 17.38% of the overall ball screw precision loss under mixed sliding-rolling motion. In addition, the effects of operating conditions and structural parameters on precision loss were analyzed. The sensitivity coefficients of factors influencing were used to quantitatively describe impact degree on precision degradation.


Silicon ◽  
2021 ◽  
Author(s):  
Pradipta Dutta ◽  
SubhashreeSoubhagyamayee Behera ◽  
Soumendra Prasad Rout

Author(s):  
João Pessoa ◽  
Nuno Fonseca ◽  
C. Guedes Soares

The paper presents an experimental and numerical investigation on the motions of a floating body of simple geometry subjected to harmonic and biharmonic waves. The experiments were carried out in three different water depths representing shallow and deep water. The body is axisymmetric about the vertical axis, like a vertical cylinder with a rounded bottom, and it is kept in place with a soft mooring system. The experimental results include the first order motion responses, the steady drift motion offset in regular waves and the slowly varying motions due to second order interaction in biharmonic waves. The hydrodynamic problem is solved numerically with a second order boundary element method. The results show a good agreement of the numerical calculations with the experiments.


Sign in / Sign up

Export Citation Format

Share Document