scholarly journals Amaranth irrigation frequency in northeast Patagonia, Argentina

2021 ◽  
pp. 247-258
Author(s):  
Maria Fany Zubillaga ◽  
Roberto Simon Martínez ◽  
Ricardo Camina ◽  
Gustavo Adolfo Orioli ◽  
Mauricio Failla ◽  
...  

Introduction. The production potential of grain amaranth has recently been demonstrated in northeastern Patagonia, Argentina. This crop under irrigation and in a temperate semi-arid climate showed an adequate development of the plants in their different phenological stages with high economic performance. Objectives. This study explored the response of Amaranthus cruentus cv Mexicano to different irrigation frequencies in the lower valley of Río Negro river, Patagonia, Argentina. Method. The experimental design was of three blocks with randomized treatments (subplots), each one corresponding to a different irrigation frequency. The first six irrigations were performed every 7 days for all the treatments, to ensure the establishment of the crop. Then the following treatments were applied: irrigation every 7 days (FI), every 14 days (FII), and every 21 days (FIII). The following biometric variables and their components were measured: height of plant, number of leaves, biomass and economic yield. Results. The results suggest that the optimum irrigation frequency was FII (14 days), resulting in an adequate plant stand at panicle initiation and allows a proper development of plant with optimal biological and economical yields and the highest efficiency of water use (4.02 kg·m-3). Conclusions. The contributions of this study demonstrated the production potential of A. cruentus crop in the lower valley of the Río Negro river under irrigation, representing the southernmost study on irrigation frequency made for this grain crop in the world. A management of irrigation water of 7 days for the establishment of the crop and then with a frequency of 14 days showed the highest yield and the best water use efficiency.

1970 ◽  
Vol 34 (3) ◽  
pp. 417-424
Author(s):  
SK Biswas ◽  
MA Razzaque Akanda ◽  
M Rafi Uddin ◽  
PK Sarker

A two-year field experiment was conducted at Regional Agricultural Research Station, Jessore during the rabi seasons of 2002-2003 and 2003-2004 to find out the level of disease incidence under different levels of irrigation and fungicide spray on the bulb yield of onion. Four irrigation levels: no irrigation (I1), irrigation at 10 days interval (I2), 20 days interval (I3), and 30 days interval (14) with 4 spray schedules: no spray (F1), one spray at 40 days after transplanting (DAT) (F2), two sprays each at 40 and 55 DAT (F3) and three sprays each at 40, 55, and 70 DAT (F4) were used. Yield and yield attributes varied significantly (p = 0.05) between sprayed and unsprayed, and irrigated and non-irrigated treatments, respectively. Higher yields were obtained with the higher frequencies of irrigation and spray. Application of fungicide reduced the disease severity significantly, while irrigation had no significant effect on disease infection. But there was a decreasing trend of the disease severity with increasing irrigation frequency. The highest bulb yield of onion (12.45 t/ha) was obtained with a total water use of 245 mm in six applications including an effective rainfall of 16 mm and three sprays. The disease severity between sprayed and unsprayed plots ranged from 1.33 to 3.16 for I1, 1.08 to 2.33 for I2 1.16 to 2.83 for I3, and 1.16 to 3.00 for I4, respectively. Key Words: Onion, disease incidence, irrigation, water use efficiency. DOI: 10.3329/bjar.v34i3.3967 Bangladesh J. Agril. Res. 34(3) : 417-424, September 2009


Author(s):  
Amsalu Gobena Roro ◽  
Mihret Tesfaye

Introduction: The sweet potato (Ipomoea batatas Lam.), is one of the root and tuber crops grown from low land to high land region of Ethiopia. However, its productivity depends on adaptability and tolerance to different environmental stresses and the capacity of the crop to enhance water use efficiency under moisture stress conditions. The objective of this study was to evaluate impact of irrigation interval on morpho-physiological characteristics of sweet potato varieties. Methodology: The trial was a 3 x 2 factorial arrangement in CRD design consisting: three irrigation intervals (daily-control), four days and seven days interval) combined with two sweet potato genotypes (Hawassa-83 and Kulfo) with three replications. Results: The morpho-physiological indicators, morphological traits, water use efficiency (WUE), Relative leaf water content (RLWC), leaf gas exchange, stomata density, and tuber yield were evaluated. The result indicated that morphological traits were significantly (P≤0.05) responded to genotype and irrigation frequencies. As compared to daily irrigation, an extended watering interval to seven days irrigation interval significantly reduced leaf number, vine length, branch number and internode length by 55.42, 19.83 cm, 2.17 and 0.35 cm, respectively. Stomata density was strongly responded to genotypes than effect of irrigation frequency. Genotype Hawassa-83 had approximately 2.0 more stomata per mm2 than genotype Kulfo regardless to irrigation frequency. The interaction effect between genotype and irrigation frequency revealed significant influence on photosynthesis and transpiration rate. The rate of assimilate accumulation was significantly reduced (by 9.97


2017 ◽  
Vol 50 (2) ◽  
pp. 21-34 ◽  
Author(s):  
F.B. Anjorin ◽  
S.A. Adejumo ◽  
K.S. Are ◽  
D. J. Ogunniyan

AbstractWater stress is one of the major abiotic factors affecting crop growth and development at every growth stages. Effects of water deficit on the vegetative growth stage of four maize varieties consisting of two Quality Protein Maize varieties (ILE1OB and ART98SW6OB) and two drought tolerant checks (TZPBSR and DTESTRSYN) were evaluated under the screen house conditions at the Institute of Agricultural Research and Training (I.A.R & T), Moor Plantation, Ibadan. Maize seeds were sown in 20 L plastic pots filled with 15 kg top soil, which were subjected to four watering regimes of 25, 50, 75 and 100% field capacities (FC). The experimental design was a 4 × 4 factorial fitted into CRD with four replications. Data were collected on days to germination, number of leaves per plant, leaf area, plant height, stem diameter, leaf extension rate, biomass yield and water use efficiency. The result showed that days to germination were prolonged as the moisture availability decreases, while water use efficiency increased as the moisture level reduced. Reduction in moisture availability caused significant reduction in the other evaluated parameters. At 25% FC DTESTRSYN was superior in leaf area, number of leaves per plant, days to germination and water use efficiency, TZPBSR had highest values for stem diameter and biomass yield, while ILE1OB was superior in plant height, stem diameter, leaf and stem extension rate. ILE1OB competes favourably with the drought tolerant checks and performed better than ART98SW6OB. Adequate moisture condition is fundamental for normal growth and development in maize crops.


1987 ◽  
Vol 5 (3) ◽  
pp. 127-130 ◽  
Author(s):  
Yin-Tung Wang ◽  
Carol A. Boogher

A fully expanded hydrogel, Agrosoke, was used to replace 5% (1 ×) or 10% (2 ×) of the volume of a potting medium to determine its effect on plant growth and water use. Although irrigation frequency was unaffected by Agrosoke, spider plants (Chlorophytum comosum (Thunb.) Jacques ‘Vittatum’) grown in the 2 × medium were 50% larger and had more lateral shoots and better root systems than the control, demonstrating improved water use efficiency. Agrosoke had no effect on either irrigation frequency or on fresh weight of Boston fern (Nephrolepis exaltata (L.) Schott. ‘Rooseveltii’). Leachates from hydrogel-amended media had higher electrical conductivity indicating that more nutrients and other salts were held by these media.


HortScience ◽  
2010 ◽  
Vol 45 (8) ◽  
pp. 1255-1259 ◽  
Author(s):  
Juan Carlos Melgar ◽  
Arnold W. Schumann ◽  
James P. Syvertsen

We determined if frequency of application of irrigation water plus fertilizer in solution (fertigation) could modify root and shoot growth along with growth per unit nitrogen (N) and water uptake of seedlings of the citrus rootstock Swingle citrumelo growing in a greenhouse. In the first experiment, all plants received the same amount of water with sufficient fertilizer N but in three irrigation frequencies applied in 10 1.5-mL pulses per day, one 15-mL application per day, or 45 mL applied every 3 days. Plants irrigated at the highest frequency grew the least total dry weight and had the highest specific root length. Plants with lowest irrigation frequency grew the most and used the least water so had the highest water use efficiency. There were no irrigation frequency effects on relative growth allocation between shoot and roots, net gas exchange of leaves, or on leaf N. A second experiment used identical biweekly irrigation volumes and fertilizer rates, but water and fertilizer were applied using four frequency combinations: 1) daily fertigation; 2) daily irrigation with fertilizer solution applied every 15 days; 3) fertigation every 3 days; or 4) irrigation every 3 days and fertilizer solution applied every 14 days. Total plant growth was unaffected by treatments, but the highest frequency using the lowest fertilizer concentration grew the greatest root dry weight in the uppermost soil depths. Roots grew less and leaf N was highest when N was applied every 15 days, implying that root N uptake efficiency was increased when fertigated with the highest fertilizer concentration. All plants had similar water use efficiencies. A third experiment was conducted with irrigation every 3 days and with four different N application frequencies: every 3, 6, 12, or 24 days using four fertilizer concentrations but resulting in similar total N amounts every 24 days. There were no differences in growth, gas exchange, or water use efficiency. Given the fact that all treatments received adequate and equal amounts of water and fertilizer, fertigation frequency had only small effects on plant growth, although very high frequency fertigation decreased N uptake efficiency.


Sign in / Sign up

Export Citation Format

Share Document