scholarly journals Strain distribution during air bending of ultra-high strength steels

2021 ◽  
Author(s):  
Aki-Petteri Pokka ◽  
Anna-Maija Arola ◽  
Antti Kaijalainen ◽  
Vili Kesti ◽  
Jari Larkiola

Air bending is a widely used method for forming ultra-high strength steels (UHSS). However, the limited formability of UHSS poses some challenges for the bending process in the form of strain localisation, surface defects, punch detachment (multi-breakage) and pseudo-polygonal “nut-like” shape of the bend. In this study, the bendability of three UHSS grades (700, 900 and 1100 MPa) is investigated with 3-point bending tests, utilising Digital Image Correlation (DIC) for measuring the strain distributions on the outer curvature. The differences in the extent of multi-breakage and the bend shapes are also studied, and these observations are correlated with the findings from the bending force and strain measurements. The differences between the investigated UHSS grades are significant. The 900 MPa grade produces more localised strain distributions and pronounced multi-breakage compared to the other grades, along with a more polygonal “nut-like” geometry. The reasons and effects of the multi-breakage phenomenon, as well as the causes for the observed differences in the behaviour of the materials are discussed in this paper. The presented results and the measurement data provide more information about the behaviour of the investigated materials in bending, and can be used for improving bending simulation, numerical models, and workshop instructions.

2014 ◽  
Vol 611-612 ◽  
pp. 1110-1115 ◽  
Author(s):  
Mohamed El Budamusi ◽  
Andres Weinrich ◽  
Chrstioph Becker ◽  
Sami Chatti ◽  
A. Erman Tekkaya

Bending is a commonly used forming technology in metal forming. The occurring springback and low forming limits of high-strength steels especially during air bending are the main disadvantages. In this paper, the conventional air bending process is applied with a hydrostatic pressure in the bending zone. This was done using an elastomer tool. The advantage of this method is that the flexibility of air bending is maintained by reducing the springback while the forming limits are extended. Furthermore, different geometries for the elastomer tool were investigated by means of a FEM simulation. The investigation leads to a reduction of the process forces by minimizing the springback and to an extension of the forming limits.


2012 ◽  
Vol 504-506 ◽  
pp. 901-906 ◽  
Author(s):  
Antti Määttä ◽  
Antti Järvenpää ◽  
Matias Jaskari ◽  
Kari Mäntyjärvi ◽  
Jussi A. Karjalainen

The use of ultra-high-strength steels (UHS) has become more and more popular within last decade. Higher strength levels provide lighter and more robust steel structures, but UHS-steels are also more sensitive to surface defects (e.g. scratches). Practically this means that the critical crack size decreases when the strength increases. The aim of the study was to study if the formula of critical crack size is valid on forming processes of UHS-steels. Surface cracks with different depths were created by scratching the surface of the sheet by machining center. Effect of the scratch depth was determined by bending the specimens to 90 degrees. Bents were then visually compared and classified by the minimum achieved bending radius. Test materials used were direct quenched (DQ) bainitic-martensitic UHS steels (YS/TS 960/1000 and 1100/1250). Results from the bending tests were compared to the calculated values given by the formula of critical crack size.


2014 ◽  
Vol 622-623 ◽  
pp. 1173-1180 ◽  
Author(s):  
Andres Weinrich ◽  
Chrstioph Becker ◽  
Frauke Maevus ◽  
Sami Chatti ◽  
A. Erman Tekkaya

Springback and limited forming limits of modern high strength steels are a big challenge in manufacturing engineering. Both aspects are crucial in sheet metal bending processes. Different modifications of the air bending process have already been developed in order to reduce springback and also to increase the forming limits of materials. A new method (the incremental stress superposition on air bending) has been developed. Studies of this new process alternative show a positive effect on the springback behavior. In order to investigate the potential of this process a comparison with other already established bending processes have been carried out. A possible process control to extend the forming limits has also been investigated.


2015 ◽  
Vol 651-653 ◽  
pp. 1602-1607 ◽  
Author(s):  
Sami Chatti ◽  
Andres Weinrich ◽  
Mohamed El Budamusi ◽  
Christoph Becker ◽  
Frauke Maevus ◽  
...  

High springback and limited forming limits of modern high strength steels are a big challenge in manufacturing engineering. Both aspects are crucial in sheet metal bending processes. Different modifications of the air bending process have already been developed in order to reduce springback and also to increase the forming limits of materials. The innovative process of incremental stress superposition on air bending, developed at the IUL, is an alternative to conventional processes. Studies of this new process alternative show a positive effect on the considerable reduction of the sheet metal springback and extension of forming limits. Using the principle of incremental stress superposition leads to several advantages compared to conventional bending processes like die bending, bending with an elastomer tool, or three point bending. The bending force and, therefore, the consumed energy during air bending with incremental stress superposition are much lower. This paper presents the new process alternative and shows the latest investigation results.


2021 ◽  
Vol 174 ◽  
pp. 111035
Author(s):  
Ajit Kumar Pramanick ◽  
Hrishikesh Das ◽  
Ji-Woo Lee ◽  
Yeyoung Jung ◽  
Hoon-Hwe Cho ◽  
...  

2014 ◽  
Vol 775-776 ◽  
pp. 136-140 ◽  
Author(s):  
Renato Araujo Barros ◽  
Antonio Jorge Abdalla ◽  
Humberto Lopes Rodrigues ◽  
Marcelo dos Santos Pereira

The 4340 are classified as ultra-high strength steels used by the aviation industry and aerospace applications such as aircraft landing gear and several structural applications, usually in quenched and tempered condition. In this situation occurs reduction of toughness, which encourages the study of multiphasic and bainític structures, in order to maintain strength without loss of toughness. In this study, ferritic-pearlitic structure was compared to bainitic and martensitic structure, identified by the reagents Nital, LePera and Sodium Metabisulfite. Sliding wear tests of the type pin-on-disk were realized and the results related to the microstructure of these materials and also to their hardnesses. It is noted that these different microstructures had very similar behavior, concluding that all three tested pairs can be used according to the request level.


Sign in / Sign up

Export Citation Format

Share Document