scholarly journals Explicit higher-order schemes for molecular dynamics problems

Author(s):  
Е.В. Ворожцов ◽  
С.П. Киселев

Рассмотрены явные симплектические разностные схемы Рунге–Кутты–Нистрема (RKN) с числом стадий от 1 до 5 для численного решения задач молекулярной динамики, описываемых системами с распадающимися гамильтонианами. Для числа стадий 2 и 3 параметры RKN-схем получены с помощью техники базисов Гребнера. Для числа стадий 4 и 5 новые схемы най дены с применением метода численной оптимизации Нелдера–Мида. В частности, для числа стадий 4 получены четыре новые схемы. Для числа стадий 5 получены три новые схемы в дополнение к четырем схемам, известным в литературе. Для каждого конкретного числа стадий найдена схема, являющаяся наилучшей с точки зрения минимума ведущего члена погрешности аппроксимации. Верификация схем осуществлена на задаче, имеющей точное решение. Показано, что симплектическая пятистадийная RKN-схема обеспечивает более точное сохранение баланса полной энергии системы частиц, чем схемы более низких порядков точности. Исследования устойчивости схем выполнены с помощью программного пакета Mathematica. The Runge–Kutta–Nyström (RKN) explicit symplectic difference schemes are considered with a number of stages from 1 to 5 for the numerical solution of molecular dynamics problems described by systems with separable Hamiltonians. For the numbers of stages 2 and 3, the parameters of the RKN schemes are obtained using the Gröbner basis technique. For the number of stages 4 and 5, new schemes were found using the Nelder–Mead numerical optimization method. In particular, four new schemes are obtained for the number of stages 4. For the number of stages 5, three new schemes are obtained in addition to the four schemes, which are well-known in the literature. For each specific number of stages, a scheme is found being the best in terms of the minimum of the leading term of the approximation error. Verification of the schemes is carried out on a problem that has an exact solution. It is shown that the symplectic five-stage RKN scheme provides a more accurate conservation of the total energy balance of the particle system than schemes of lower orders of accuracy. The stability studies of the schemes were performed using the Mathematica software package.

Author(s):  
Salam Pradeep Singh ◽  
Iftikar Hussain ◽  
Bolin Kumar Konwar ◽  
Ramesh Chandra Deka ◽  
Chingakham Brajakishor Singh

Aim and Objective: To evaluate a set of seventy phytochemicals for their potential ability to bind the inhibitor of nuclear factor kappaB kinase beta (IKK-β) which is a prime target for cancer and inflammatory diseases. Materials and Methods: Seventy phytochemicals were screened against IKK-β enzyme using DFT-based molecular docking technique and the top docking hits were carried forward for molecular dynamics (MD) simulation protocols. The adme-toxicity analysis was also carried out for the top docking hits. Results: Sesamin, matairesinol and resveratrol were found to be the top docking hits with a total score of -413 kJ/mol, -398.11 kJ/mol and 266.73 kJ/mol respectively. Glu100 and Gly102 were found to be the most common interacting residues. The result from MD simulation observed a stable trajectory with a binding free energy of -107.62 kJ/mol for matairesinol, -120.37 kJ/mol for sesamin and -40.56 kJ/mol for resveratrol. The DFT calculation revealed the stability of the compounds. The ADME-Toxicity prediction observed that these compounds fall within the permissible area of Boiled-Egg and it does not violate any rule for pharmacological criteria, drug-likeness etc. Conclusion: The study interprets that dietary phytochemicals are potent inhibitors of IKK-β enzyme with favourable binding affinity and less toxic effects. In fact, there is a gradual rise in the use of plant-derived molecules because of its lesser side effects compared to chemotherapy. The study has also provided an insight by which the phytochemicals inhibited the IKK-β enzyme. The investigation would also provide in understanding the inhibitory mode of certain dietary phytochemicals in treating cancer.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Anna Aviñó ◽  
Elena Cubero ◽  
Raimundo Gargallo ◽  
Carlos González ◽  
Modesto Orozco ◽  
...  

The structure of G,T-parallel-stranded duplexes of DNA carrying similar amounts of adenine and guanine residues is studied by means of molecular dynamics (MD) simulations and UV- and CD spectroscopies. In addition the impact of the substitution of adenine by 8-aminoadenine and guanine by 8-aminoguanine is analyzed. The presence of 8-aminoadenine and 8-aminoguanine stabilizes the parallel duplex structure. Binding of these oligonucleotides to their target polypyrimidine sequences to form the corresponding G,T-parallel triplex was not observed. Instead, when unmodified parallel-stranded duplexes were mixed with their polypyrimidine target, an interstrand Watson-Crick duplex was formed. As predicted by theoretical calculations parallel-stranded duplexes carrying 8-aminopurines did not bind to their target. The preference for the parallel-duplex over the Watson-Crick antiparallel duplex is attributed to the strong stabilization of the parallel duplex produced by the 8-aminopurines. Theoretical studies show that the isomorphism of the triads is crucial for the stability of the parallel triplex.


Author(s):  
Sheema Jb ◽  
Waheeta Hopper

  Objective: Glycogen synthase kinase 3 beta (GSK3β) is one of the main targets for wound healing activity. Our objective is to identify novel inhibitors for GSK3β using in silico approach.Methods: Grid-based molecular docking, energy-based pharmacophore (e-pharmacophore) modeling, and molecular dynamics (MD) studies were performed for phytocompounds with GSK3β and compared with standard drugs using Schrodinger software.Results: The glide scores and the molecular interactions of the phytocompounds were well comparable to the standard drugs. The MD was performed for the target bound to the best scoring ligand, entagenic acid. The pharmacophore features of this docked complex were modeled as e-pharmacophore. The constructed e-pharmacophore model was screened against phytocompounds retrieved from literature to identify the ligands with similar pharmacophore features.Conclusion: The glide scores of fukinolic acid, cimicifugic acid, and linarin were −10.99, −8.28, and −7.25 kcal/mol, respectively. The further 50 nanoseconds MD study determined the stability of GSK3β-linarin complex. Nitrofurazone and sulfathiazole drugs can lead to systemic side effects. Hence, it is concluded that linarin could be a potent wound healing compound against GSK3β.


2018 ◽  
Vol 19 (11) ◽  
pp. 3524 ◽  
Author(s):  
Guodong Hu ◽  
Xiu Yu ◽  
Yunqiang Bian ◽  
Zanxia Cao ◽  
Shicai Xu ◽  
...  

ToxIN is a triangular structure formed by three protein toxins (ToxNs) and three specific noncoding RNA antitoxins (ToxIs). To respond to stimuli, ToxI is preferentially degraded, releasing the ToxN. Thus, the dynamic character is essential in the normal function interactions between ToxN and ToxI. Here, equilibrated molecular dynamics (MD) simulations were performed to study the stability of ToxN and ToxI. The results indicate that ToxI adjusts the conformation of 3′ and 5′ termini to bind to ToxN. Steered molecular dynamics (SMD) simulations combined with the recently developed thermodynamic integration in 3nD (TI3nD) method were carried out to investigate ToxN unbinding from the ToxIN complex. The potentials of mean force (PMFs) and atomistic pictures suggest the unbinding mechanism as follows: (1) dissociation of the 5′ terminus from ToxN, (2) missing the interactions involved in the 3′ terminus of ToxI without three nucleotides (G31, A32, and A33), (3) starting to unfold for ToxI, (4) leaving the binding package of ToxN for three nucleotides of ToxI, (5) unfolding of ToxI. This work provides information on the structure-function relationship at the atomistic level, which is helpful for designing new potent antibacterial drugs in the future.


2017 ◽  
Vol 4 (10) ◽  
pp. 1679-1690 ◽  
Author(s):  
Hamed Akbarzadeh ◽  
Esmat Mehrjouei ◽  
Amir Nasser Shamkhali ◽  
Mohsen Abbaspour ◽  
Sirous Salemi ◽  
...  

Molecular dynamics simulations were used to investigate the structural evolution and thermal behavior of Ni–Pd hollow nanoparticles.


Author(s):  
Muhammad Hassan ◽  
Benjamin Stamm

In this article, we analyse an integral equation of the second kind that represents the solution of N interacting dielectric spherical particles undergoing mutual polarisation. A traditional analysis can not quantify the scaling of the stability constants- and thus the approximation error- with respect to the number N of involved dielectric spheres. We develop a new a priori error analysis that demonstrates N-independent stability of the continuous and discrete formulations of the integral equation. Consequently, we obtain convergence rates that are independent of N.


Sign in / Sign up

Export Citation Format

Share Document