scholarly journals Atomistic Analysis of ToxN and ToxI Complex Unbinding Mechanism

2018 ◽  
Vol 19 (11) ◽  
pp. 3524 ◽  
Author(s):  
Guodong Hu ◽  
Xiu Yu ◽  
Yunqiang Bian ◽  
Zanxia Cao ◽  
Shicai Xu ◽  
...  

ToxIN is a triangular structure formed by three protein toxins (ToxNs) and three specific noncoding RNA antitoxins (ToxIs). To respond to stimuli, ToxI is preferentially degraded, releasing the ToxN. Thus, the dynamic character is essential in the normal function interactions between ToxN and ToxI. Here, equilibrated molecular dynamics (MD) simulations were performed to study the stability of ToxN and ToxI. The results indicate that ToxI adjusts the conformation of 3′ and 5′ termini to bind to ToxN. Steered molecular dynamics (SMD) simulations combined with the recently developed thermodynamic integration in 3nD (TI3nD) method were carried out to investigate ToxN unbinding from the ToxIN complex. The potentials of mean force (PMFs) and atomistic pictures suggest the unbinding mechanism as follows: (1) dissociation of the 5′ terminus from ToxN, (2) missing the interactions involved in the 3′ terminus of ToxI without three nucleotides (G31, A32, and A33), (3) starting to unfold for ToxI, (4) leaving the binding package of ToxN for three nucleotides of ToxI, (5) unfolding of ToxI. This work provides information on the structure-function relationship at the atomistic level, which is helpful for designing new potent antibacterial drugs in the future.

2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Anna Aviñó ◽  
Elena Cubero ◽  
Raimundo Gargallo ◽  
Carlos González ◽  
Modesto Orozco ◽  
...  

The structure of G,T-parallel-stranded duplexes of DNA carrying similar amounts of adenine and guanine residues is studied by means of molecular dynamics (MD) simulations and UV- and CD spectroscopies. In addition the impact of the substitution of adenine by 8-aminoadenine and guanine by 8-aminoguanine is analyzed. The presence of 8-aminoadenine and 8-aminoguanine stabilizes the parallel duplex structure. Binding of these oligonucleotides to their target polypyrimidine sequences to form the corresponding G,T-parallel triplex was not observed. Instead, when unmodified parallel-stranded duplexes were mixed with their polypyrimidine target, an interstrand Watson-Crick duplex was formed. As predicted by theoretical calculations parallel-stranded duplexes carrying 8-aminopurines did not bind to their target. The preference for the parallel-duplex over the Watson-Crick antiparallel duplex is attributed to the strong stabilization of the parallel duplex produced by the 8-aminopurines. Theoretical studies show that the isomorphism of the triads is crucial for the stability of the parallel triplex.


2012 ◽  
Vol 192 ◽  
pp. 260-265 ◽  
Author(s):  
Xiu Li Lu ◽  
Shu Chao Chen ◽  
Yong Zhang ◽  
Li Zhang ◽  
Hong Sheng Liu ◽  
...  

Keap1 negatively regulates the function of Nrf2 that is a major activator of genes encoding phase 2 detoxifying enzymes via sequestering cytoplasmic Nrf2 and subsequent degradation through the proteasome system. Reactive cysteine residues of Keap1 could be modified by Michael reaction acceptor molecules. Previous studies have shown that adduction at Cys151 by diethyl maleate (DEM) can give rise to a significant conformational change in Keap1 that leads to the dissociation of Keap1 from CUL3, hence inhibits Nrf2 ubiquitylation. The BTB domain of Keap1 plays a crucial role in both forming self-dimerization and binding to CUL3. In order to better understanding the molecular mechanism how DEM interact with amino acid residues around Cys151, we performed two molecular dynamics (MD) simulations including Keap1-DEM complex and Keap1 alone (control group). Interestingly, we found that after a short period of lingering around Cys151, DEM ultimately stabilized in a gap between two specific helixes away from the cavity around Cys151 and induced a concomitant significant conformational change of BTB domain of Keap1. Similar phenomenon, however, was not observed in the control group. These results suggested that DEM could impair the normal function of Keap1 by inducing the conformational change of BTB domain via direct noncovalent bonded interaction. Our research provides a new insight into another way of interaction between Keap1 and DEM in spite of their known Michael addition reaction, by which novel phase2 enzyme inducer drugs with higher specificity could be discovered in the future


2019 ◽  
Author(s):  
Barira Islam ◽  
Petr Stadlbauer ◽  
Michaela Vorlíčková ◽  
Jean-Louis Mergny ◽  
Michal Otyepka ◽  
...  

ABSTRACTG-quadruplexes (GQs) are four-stranded non-canonical DNA and RNA architectures that can be formed by guanine-rich sequences. The stability of GQs increases with the number of G-quartets and three G-quartets generally form stable GQs. However, the stability of two-quartet GQs is an open issue. To understand the intrinsic stability of two-quartet GQ stems, we have carried out a series of unbiased molecular dynamics (MD) simulations (∼505 µs in total) of two- and four-quartet DNA and RNA GQs, with attention paid mainly to parallel-stranded arrangements. We used AMBER DNA parmOL15 and RNA parmOL3 force fields and tested different ion and water models. DNA two-quartet parallel-stranded GQs unfolded in all the simulations while the equivalent RNA GQ was stable in most of the simulations. GQs composed of two stacked units of two-quartet GQs were stable for both DNA and RNA. The simulations suggest that a minimum of three quartets are needed to form an intrinsically stable all-anti parallel-stranded DNA GQ. Parallel two-quartet DNA GQ may exist if substantially stabilized by another molecule or structural element, including multimerisation. On the other hand, we predict that isolated RNA two-quartet parallel GQs may form, albeit being weakly stable. We also show that ionic parameters and water models should be chosen with caution because some parameter combinations can cause spurious instability of GQ stems. Some in-so-far unnoticed limitations of force-field description of multiple ions inside the GQs are discussed, which compromise capability of simulations to fully capture the effect of increase of the number of quartets on the GQ stability.


2019 ◽  
Vol 152 (1) ◽  
Author(s):  
Toshiko Yamazawa ◽  
Haruo Ogawa ◽  
Takashi Murayama ◽  
Maki Yamaguchi ◽  
Hideto Oyamada ◽  
...  

Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum in skeletal muscle and plays an important role in excitation–contraction coupling. Mutations in the RYR1 gene cause severe muscle diseases such as malignant hyperthermia (MH), which is a disorder of CICR via RYR1. Thus far, >300 mutations in RYR1 have been reported in patients with MH. However, owing to a lack of comprehensive analysis of the structure–function relationship of mutant RYR1, the mechanism remains largely unknown. Here, we combined functional studies and molecular dynamics (MD) simulations of RYR1 bearing disease-associated mutations at the N-terminal region. When expressed in HEK293 cells, the mutant RYR1 caused abnormalities in Ca2+ homeostasis. MD simulations of WT and mutant RYR1s were performed using crystal structure of the N-terminal domain (NTD) monomer, consisting of A, B, and C domains. We found that the mutations located around the interdomain region differentially affected hydrogen bonds/salt bridges. Particularly, mutations at R402, which increase the open probability of the channel, cause clockwise rotation of BC domains with respect to the A domain by alteration of the interdomain interactions. Similar results were also obtained with artificial mutations that mimic alteration of the interactions. Our results reveal the importance of interdomain interactions within the NTD in the regulation of the RYR1 channel and provide insights into the mechanism of MH caused by the mutations at the NTD.


2018 ◽  
Author(s):  
Aoife M Harbison ◽  
Lorna P Brosnan ◽  
Keith Fenlon ◽  
Elisa Fadda

AbstractFc glycosylation of human immunoglobulins G (IgGs) is essential for their structural integrity and activity. Interestingly, the specific nature of the Fc glycoforms is known to modulate the IgG effector function. Indeed, while core-fucosylation of IgG Fc-glycans greatly affects the antibody-dependent cell-mediated cytotoxicity (ADCC) function, with obvious repercussions in the design of therapeutic antibodies, sialylation can reverse the antibody inflammatory response, and galactosylation levels have been linked to aging, to the onset of inflammation, and to the predisposition to rheumatoid arthritis. Within the framework of a structure-to-function relationship, we have studied the role of the N-glycan sequence on its intrinsic conformational propensity. Here we report the results of a systematic study, based on extensive molecular dynamics (MD) simulations in excess of 62 µs of cumulative simulation time, on the effect of sequence on the structure and dynamics of increasingly larger, complex biantennary N-glycoforms, i.e. from chitobiose to the larger N-glycan species commonly found in the Fc region of human IgGs. Our results show that while core fucosylation and sialylation do not affect the intrinsic dynamics of the isolated (unbound) N-glycans, galactosylation of the α(1-6) arm shifts dramatically its conformational equilibrium from an outstretched to a folded conformation. These findings are in agreement with and can help rationalize recent experimental evidence showing a differential recognition of positional isomers in glycan array data and also the preference of sialyltransferase for the more reachable, outstretched α(1-3) arm in both isolated and Fc-bound N-glycans.


2022 ◽  
Author(s):  
Chanadan Douykhumklaw ◽  
Thana Sutthibutpong

Abstract Molecularly imprinted polymers (MIP) are the polymers created by molecular imprinting techniques that leave cavities for the specific interactions with a template molecule, and have been applied in molecular selectivity tasks. In this study, the molecular dynamics (MD) simulation technique was used to demonstrate that aniline oligomer could be developed as a potential MIP for detection and separation of the spectinomycin drug molecule for gonorrhoea treatment. MD simulations were performed for the systems of a spectinomycin within aniline oligomers of different sizes. The mean square displacement (MSD) and the diffusivity calculated from MD simulations showed that the diffusion coefficient was significantly dropped when the length of aniline oligomer was greater than two. The diffusion coefficient of spectinomycin became the lowest within aniline trimers, corresponded to the highest atomic distribution of MIP around the template. Then, the specific cavity in MIP systems with and without spectinomycin were calculated to assess the stability of the cavity created by the template. The volume of a cavity created within the trimer system was closest to the spectinomycin volume, and therefore became the optimal oligomer size for further development of MIP.


2020 ◽  
Author(s):  
Tom Miclot ◽  
Camille Corbier ◽  
Alessio Terenzi ◽  
Cécilia Hognon ◽  
Stéphanie Grandemange ◽  
...  

AbstractHuman telomeric DNA (h-Telo), in G-quadruplex (G4) conformation, is characterized by a remarkable structural stability that confers it the capacity to resist to oxidative stress producing one or even clustered 8-oxoguanine lesions. We present a combined experimental/computational investigation, by using circular dichroism in aqueous solutions, cellular immunofluorescence assays and molecular dynamics (MD) simulations, that identifies the crucial role of the stability of G4s to oxidative lesions, related also to their biological role as inhibitors of telomerase, an enzyme overexpressed in most cancers associated to oxidative stress.


2017 ◽  
Author(s):  
Wei Chen ◽  
Zhiye Tang ◽  
Tim Cholko ◽  
Chia-en A. Chang

AbstractThe activities of CDK8 with partner Cyclin C (CycC) are a common feature of many diseases, especially cancers. Here we report the study of dynamic behaviors and energy profiles of 13 CDK8/CycC systems, including the DMG-in and DMG-out conformations as well as 5 type I ligands and 5 type II ligands, with all-atom unbiased molecular dynamics (MD) simulations. We observed numerous regional motions within CDK8, which move in concert to form five major protein motions. The motion of the activation loop doesn’t appear to influence the binding of both types of ligands. Type I ligands remarkably reduce the motion of the C-terminal tail through the strong cation-π interaction between the ligands and ARG356, and type II ligands stabilize the αC helix by forming stable hydrogen bonds with GLU66. The MD calculations also confirmed the importance of CycC to the stability of the CDK8 system as well as the ligand binding. The MMPB/SA results show that van der Waals interaction is the main driving force for the binding of both types of ligands, but electrostatic energy and entropy penalty plays important roles in the binding of type II ligands. The volume analysis results indicate that the induced fitting theory applies in the binding of type I ligands. These results would help to improve the affinities of the existing ligands. Our MD work is complementary to crystal structures and may have implications in the development of new CDK8 inhibitors as well as in the field of drug discovery.


2021 ◽  
Author(s):  
Paul Morgan ◽  
Chih-Wen Shu

ABSTRACTSevere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a newly identified RNA virus that causes the serious infection Coronavirus Disease 2019 (COVID-19). The incidence of COVID-19 is still increasing worldwide despite the summer heat and cool winter. However, little is known about seasonal stability of SARS-CoV-2. Herein, we employ Molecular Dynamics (MD) simulations to explore the effect of temperature on four critical SARS-CoV-2 proteins. Our work demonstrates that the spike Receptor Binding Domain (RBD), Main protease (Mpro), and nonstructural protein 3 (macro X) possesses extreme thermos-stability when subjected to temperature variations rendering them attractive drug targets. Furthermore, our findings suggest that these four proteins are well adapted to habitable temperatures on earth and are largely insensitive to cold and warm climates. Furthermore, we report that the critical residues in SARS-CoV-2 RBD were less responsive to temperature variations as compared to the critical residues in SARS-CoV. As such, extreme summer and winter climates, and the transition between the two seasons, are expected to have a negligible effect on the stability of SARS-CoV-2 which will marginally suppress transmission rates until effective therapeutics are available world-wide.


2020 ◽  
Vol 23 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Nouman Rasool ◽  
Waqar Hussain

Background: Human Immunodeficiency Virus 1 (HIV-1) is a lentivirus, which causes various HIV-associated infections. The HIV-1 core dissociation is essential for viral cDNA synthesis and phosphorylation of HIV-1 capsid protein (HIV-1 CA) plays an important role in it. Objective: The aim of this study was to explicate the role of three phosphoserine sites i.e. Ser109, Ser149 and Ser178 in the structural stability of HIV-1 CA, and it’s binding with GS-CA1, a novel potent inhibitor. Method: Eight complexes were analyzed and Molecular Dynamics (MD) simulations were performed to observe the stability of HIV-1 CA in the presence and absence of phosphorylation of serine residues at four different temperatures i.e. 300K, 325K, 340K and 350K, along with molecular docking and DFT analysis. Results: The structures showed maximum stability in the presence of phosphorylated serine residue. However, GS-CA1 docked most strongly with the native structure of HIV-1 CA i.e. binding affinity was -8.5 kcal/mol (Ki = 0.579 µM). Conclusion: These results suggest that the phosphorylation of these three serine residues weakens the binding of GS-CA1 with CA and casts derogatory effect on inhibition potential of this inhibitor, but it supports the stability of HIV-1 CA structure that can enhance regulation and replication of HIV-1 in host cells.


Sign in / Sign up

Export Citation Format

Share Document