Enhanced Dissolution Performance of BCS Class II Compound

Author(s):  
Saujanya Gosangari
2021 ◽  
Vol 10 (6) ◽  
pp. 3806-3812
Author(s):  
Pritam Singh

BCS class II is well-known for the drugs, having poor aqueous solubility and high permeability. Simvastatin is also categorized as BCS class II, suffering from poor aqueous solubility, affecting its bioavailability. In an attempt to resolve this problem, solid dispersions of simvastatin were prepared by spray-drying method. Solid dispersions of simvastatin with PVP K25 and aerosol in ratio (1:1:1 to 1:5:1) and without aerosil 200 (1:1 to 1:5) were prepared by spray drying method. The dissolution test showed the enhancement of dissolution as compared to the pure drug and nearly equal to marketed formulation “SIMVOTIN 20mg” in both types of formulation, but formulations with aerosil 200 showed faster drug release as compared to the simple formulations without aerosil. The formulation containing the 1:3:1 (simvastatin: PVP K25: Aerosil 200) showed the faster drug release as compared to other formulation that do not contain the Aerosil 200. Other characterization studies were also performed such as FTIR, differential scanning colorimetry and powdered X-ray crystallographic studies. These studies showed the increased amorphous nature of the drug in the formulation, which explain the enhanced dissolution rate of the drug for these formulations.


2020 ◽  
Vol 10 (5) ◽  
pp. 649-663
Author(s):  
Reena Siwach ◽  
Parijat Pandey ◽  
Harish Dureja

Background: The rate-limiting step in the oral absorption of BCS class II drugs is dissolution. Their low solubility is one of the major obstacles in the process of drug development. Dissolution rate can be increased by decreasing the particle size to the nano range, eventually leading to increased bioavailability. Objective: : In the present study, glimepiride loaded nanoparticles were prepared to enhance the dissolution rate. The aim of the work was to examine the effect of polymer-drug ratio, solvent-antisolvent ratio and speed of mixing on in vitro release of glimepiride. Methods: Glimepiride is an antidiabetic drug belonging to the BCS class II drugs. The polymeric nanoparticles were formulated according to Box-Behnken Design (BBD) using nanoprecipitation technique. The prepared nanoparticles were evaluated for in vitro drug release, loading capacity, entrapment efficiency, and percentage yield. Result: It was found that NP-8 has maximum in vitro drug release and was selected as an optimized batch. Analysis of Variance (ANOVA) was applied to the in vitro drug release to study the fitness and significance of the model. The batch NP-8 showed 70.34 ± 1.09% in vitro drug release in 0.1 N methanolic HCl and 92.02 ± 1.87% drug release in phosphate buffer pH 7.8. The release data revealed that the nanoparticles followed zero order kinetics. Conclusion: The study revealed that the incorporation of glimepiride into gelucire 50/13 resulted in enhanced dissolution rate.


Author(s):  
Sidra Nasir ◽  
Amjad Hussain ◽  
Nasir Abbas ◽  
Nadeem Irfan Bukhari ◽  
Fahad Hussain ◽  
...  
Keyword(s):  
Class Ii ◽  

2015 ◽  
Vol 489 (1-2) ◽  
pp. 45-57 ◽  
Author(s):  
Scott M. Krull ◽  
Ramana Susarla ◽  
Afolawemi Afolabi ◽  
Meng Li ◽  
Ye Ying ◽  
...  

2017 ◽  
pp. 1-18
Author(s):  
Gregory K.Webster ◽  
Robert G. Bell ◽  
J. Derek Jackson

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Marwa Tlijani ◽  
Mohamed Ali Lassoued ◽  
Badr Bahloul ◽  
Souad Sfar

Our work is aimed at exploring the composition and the properties of microemulsion (ME), as a drug delivery system, to enhance the permeability across the gastrointestinal (GI) barrier of fenofibrate, a BCS class II drug. It is a prodrug that is converted rapidly after oral administration into a major active metabolite which is the fenofibric acid. It undergoes a nearly complete presystemic metabolism. Its main drawback is the low bioavailability of the metabolite. A quick selection of excipients was made based on the capacity of solubilization and the value of hydrophilic-lipophilic balance. The classical method of ME development was coupled with the factorial design in order to minimize the droplet size using a low concentration of surfactant. The optimized ME showed a droplet size of 48.5 nm and physical stability. The passive permeability evaluated using Sartorius was 1.6 times higher than that of the free drug. The ex vivo technique, performed using the everted gut sac model, showed a 2.5-fold higher permeability. This suggests that the carrier-mediated uptake/efflux may present the dominant transport mechanism of fenofibrate. The use of the excipients that inhibit GI P-glycoprotein may be a new perspective. Thus, this paper shows that the composition and the characteristics of ME may be explored to increase the permeability of fenofibrate across the GI membrane.


Author(s):  
Paras R. Vasanani ◽  
L. Patel ◽  
Chetan Detroja

Nanosuspensions are the dispersions of nanosized particles in a suitable vehicle prepared using surfactants or solubilizers to aid in nanosize distribution. Nanosuspension is best suited for dosage form development of poorly soluble drugs. According to the biopharmaceutical classification system, drugs with poor solubility fall either in BCS class II or BCS class IV. BCS class II drugs show poor solubility and good permeability; hence their bioavailability problems can be overcome by improving their solubility. Metaxalone is one such BCS class II drug from an oxazolidin-2-one class of centrally acting muscle relaxant drugs, indicated for relief of discomforts associated with acute, painful musculoskeletal conditions. Therefore, in present investigation, nanosuspension of Metaxalone has been formulated as an attempt to improve solubility and hence the overall bioavailability of Metaxalone. Media milling technique has been employed for nanosuspension preparation. Surfactant concentration (Poloxamer 407) and stirring time has been optimized using 32 factorial design to achieve desired particle size and saturation solubility responses as dependent variables. The particle size (PS) of 215.3 nm and maximum saturation solubility (SS) of 2805μg/ml was obtained as suggested solutions from factorial design which was further confirmed using check point analysis. Interaction of surfactant concentration and stirring time and their effect on particle size and saturation solubility was predicted using the contour plots and response surface plots. The optimized formulation showed around 99% metaxalone in vitro dissolution in comparison to around 46% dissolution from SKELAXIN® tablet at 30 minutes. These methodologies could therefore be employed successfully to improve solubility of any BCS class II drug and to predict effects and interactions of many experimental variables at the same time.


Sign in / Sign up

Export Citation Format

Share Document