scholarly journals Development of a BCS Class II Drug Microemulsion for Oral Delivery: Design, Optimization, and Evaluation

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Marwa Tlijani ◽  
Mohamed Ali Lassoued ◽  
Badr Bahloul ◽  
Souad Sfar

Our work is aimed at exploring the composition and the properties of microemulsion (ME), as a drug delivery system, to enhance the permeability across the gastrointestinal (GI) barrier of fenofibrate, a BCS class II drug. It is a prodrug that is converted rapidly after oral administration into a major active metabolite which is the fenofibric acid. It undergoes a nearly complete presystemic metabolism. Its main drawback is the low bioavailability of the metabolite. A quick selection of excipients was made based on the capacity of solubilization and the value of hydrophilic-lipophilic balance. The classical method of ME development was coupled with the factorial design in order to minimize the droplet size using a low concentration of surfactant. The optimized ME showed a droplet size of 48.5 nm and physical stability. The passive permeability evaluated using Sartorius was 1.6 times higher than that of the free drug. The ex vivo technique, performed using the everted gut sac model, showed a 2.5-fold higher permeability. This suggests that the carrier-mediated uptake/efflux may present the dominant transport mechanism of fenofibrate. The use of the excipients that inhibit GI P-glycoprotein may be a new perspective. Thus, this paper shows that the composition and the characteristics of ME may be explored to increase the permeability of fenofibrate across the GI membrane.

Author(s):  
RAHUL RADKE ◽  
NEETESH K. JAIN

Objective: The aim of this investigation was to enhance the solubility and bioavailability of the BCS class II poorly water-soluble drug ambrisentan by solid dispersion (SD) techniques using Gelucire 50/13 as a hydrophilic carrier. Methods: Solid dispersion of ambrisentan was prepared by kneading method using different dug: carrier ratios. Prepared SD was characterized for solubility, drug content, percentage yield, in vitro dissolution, ex vivo permeation and bioavailability. Solid-state characterization was performed by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results: All the SDs formulations showed increase in drug solubility and dissolution when compared with its pure form. Aqueous solubility of the drug was found to be increased 8.23 fold in SD. DSC study showed that endothermic peak of the drug was disappeared in spectra of SD, confirming its amorphous conversion, XRD study revealed the reduction to almost absence of specific high-intensity peaks of drug which confirmed the reduction of crysatallinity of ambrisentan in SD. SEM of optimized SD formulation demonstrates the complete encapsulation and solubilization drug. In vitro dissolution study showed that optimized SD formulation (ASD4) gives the faster drug release of 101.5% in 60 min, as compare to its pure form and other SD formulations. Conclusion: Solid dispersion ASD4 prepared with 1:4 drug to carrier ratio showed the highest drug solubility and in vitro dissolution. The ex vivo and in vivo studies performed on optimized formulation ASD4 showed enhancement in drug permeability and bioavailability in Gelucire 50/13 based SD formulation.


Author(s):  
Hayder Kadhim Drais ◽  
Ahmed Abbas Hussein

Purpose: Felodipine, is a calcium-channel antagonist used for hypertension and angina pectoris. It is practically insoluble in aqueous media and shows low oral bioavailability (15%-20%). This investigation aims to prepare and characterize oral felodipine lipid-polymer hybrid nanocarriers (LPHNs) to increase solubility and control delivery for increasing bioavailability and enhance patient compliance. Methods: The newly microwave-based method was prepared with felodipine LPHNs (H1-H35) successfully. The (H1-H35) were subjected to thermodynamic stability experiments. After that, select nine felodipine LPHNs (F1-F9) that have smart physical stability for further optimization of different characterization processes. Results: The felodipine LPHNs (F4) are considered the most optimized formula. It was characterized by lower particle size (33.3 nm), lower PDI (0.314), high zeta potential (13.6 mV), entrapment efficiency is (81.645 %w/w), drug loading is (16.329 % w/w), the pH value is 4, excellent percent of light transmittance (95.5%), pseudoplastic rheogram, significantly high (p< 0.05) dissolution rate with sustained drug delivery and success ex-vivo intestinal permeation attributes. The (F4) subject for further investigations of fourier transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The results of FTIR, AFM, and TEM indicate there is no interaction between the felodipine and excipients and that the particulate system in the nanoscale dispersion system confirms the high stability. Conclusion: The optimized felodipine LPHNs (F1-F9) formulations were smart formulations for sustained oral delivery of felodipine and that F4 was the most optimized formula according to its characterization processes.


2020 ◽  
Vol 859 ◽  
pp. 197-202
Author(s):  
Punnarut Nongnuan ◽  
Dusadee Charnvanich

The objective of this research was to investigate the effects of emulsifier types and concentrations on the physical properties and stability of rice bran oil O/W nanoemulsions for oral administration. The nanoemulsions were formulated by using 10% of rice bran oil (RBO) as an oil phase and either single emulsifier (1,3,5% sodium caseinate (SC) or 4,6,8% polysorbate 80 (P80)) or mixed emulsifiers (1,3,5% SC and 4,6,8% P80). The nanoemulsions were prepared by Microfluidizer® at 1,500 bar for five cycles and evaluated for droplet size, polydispersity index (PDI), zeta potential, pH, and viscosity. Their physical stability was tested under heating-cooling cycles for six cycles. The results indicated that the nanoemulsions with SC (162.50-163.48 nm) had a larger droplet size than those with P80 (90.11-105.94 nm). The concentration of SC had no significant effect on the droplet size, whereas increasing the P80 concentration resulted in a significant decrease in the droplet size. For the formulations with mixed emulsifiers, an increase in the concentration of the second emulsifier leaded to a decrease in the droplet size. All nanoemulsions had narrow size distribution (PDI < 0.2), negative charge, neutral pH value, and low viscosity. The nanoemulsions with alone SC showed a larger negative charge value as compared to those with alone P80 and mixed emulsifiers. All formulations with a single emulsifier were physically stable under heating-cooling cycles for six cycles, whereas the nanoemulsions with mixed emulsifiers showed good stability for only those with the low SC concentration (1%). The rice bran oil O/W nanoemulsions obtained from this study could be developed as oral delivery systems for further applications in the pharmaceutical and food industries.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (06) ◽  
pp. 73-78
Author(s):  
Shradha Tiwari ◽  
Shailesh Wadher ◽  
Surendra Gattani

Porous silica-based drug delivery systems have shown substantial potential for improving the oral delivery of poorly water-soluble drugs.The major problem with nateglinide, a BCS Class II drug, is pHdependent solubility, limited aqueous solubility, poor dissolution and variable bioavailability. The aim of the present investigation was to develop a lipid-based solid formulation of nateglinide, as a strategy to improve both the solubility and the dissolution rate of the drug in a tablet dosage form. The silica lipid hybrid (SlH) particles were formulated using Miglyol812 and Acrysol el 135 as liquid lipid vehicles as well aslabrasol and Transcutol HP as surfactants.Nateglinide was dissolved in different lipids and later adsorbed on highly porous silica Sylloid PF244 to obtain free-flowing powders. The prepared nateglinide SlH was characterized by FT-IR, DSC, and XRD.Nateglinide SlH was evaluated for solubility and dissolution. SlH of NTG prepared with Miglyol 812 and Transcutol HP enhanced solubility of NTG 57.21 fold. From the study, it may be concluded that the oral solid lipid-based formulation, SlH has an improved potential for enhancing solubility and dissolution of BCS class II drugs like nateglinide.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (4) ◽  
pp. 63-73
Author(s):  
Mahesh S. Soni ◽  
◽  
Atmaram P. Pawar ◽  
Chellampillai Bothiraja ◽  
Vinod L. Gaikwad ◽  
...  

The purpose of the present study is to highlight the discriminations if any, between the quality of low and high-cost medicines, which would help to select the right brand of medicine. In the present work, brands of medicines having high, medium, and low prices containing either of biopharmaceutical classification system class-II or class-IV drugs were comparatively evaluated for different pharmacopoeial standards as well as for biopharmaceutical classification system solubility and permeability. An ex vivo permeability test was carried out using a simple and non-invasive everted gut sac technique. Insignificant variation in pharmaceutical quality and permeability of the tested three types of brands was observed; however, the study could not consider the state of quality assurance facilities and parameters used while manufacturing these medicines. The study will help to make aware and assure medical and pharmacy practitioners and consumers for the selection of quality quality generic medicines.


2020 ◽  
Vol 17 (3) ◽  
pp. 246-256
Author(s):  
Kriti Soni ◽  
Ali Mujtaba ◽  
Md. Habban Akhter ◽  
Kanchan Kohli

Aim: The intention of this investigation was to develop Pemetrexed Diacid (PTX)-loaded gelatine-cloisite 30B (MMT) nanocomposite for the potential oral delivery of PTX and the in vitro, and ex vivo assessment. Background: Gelatin/Cloisite 30 B (MMT) nanocomposites were prepared by blending gelatin with MMT in aqueous solution. Methods: PTX was incorporated into the nanocomposite preparation. The nanocomposites were investigated by Fourier Transmission Infra Red Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) X-Ray Diffraction (XRD) and Confocal Laser Microscopy (CLSM). FT-IR of nanocomposite showed the disappearance of all major peaks which corroborated the formation of nanocomposites. The nanocomposites were found to have a particle size of 121.9 ± 1.85 nm and zeta potential -12.1 ± 0.63 mV. DSC thermogram of drug loaded nanocomposites indicated peak at 117.165 oC and 205.816 oC, which clearly revealed that the drug has been incorporated into the nanocomposite because of cross-linking of cloisite 30 B and gelatin in the presence of glutaraldehyde. Results: SEM images of gelatin show a network like structure which disappears in the nanocomposite. The kinetics of the drug release was studied in order to ascertain the type of release mechanism. The drug release from nanocomposites was in a controlled manner, followed by first-order kinetics and the drug release mechanism was found to be of Fickian type. Conclusion: Ex vivo gut permeation studies revealed 4 times enhancement in the permeation of drug present in the nanocomposite as compared to plain drug solution and were further affirmed by CLSM. Thus, gelatin/(MMT) nanocomposite could be promising for the oral delivery of PTX in cancer therapy and future prospects for the industrial pharmacy.


Sign in / Sign up

Export Citation Format

Share Document