scholarly journals Virtual Reality and 3D Modeling of Patient Specific Temporal Bone Anatomy and Pathology

Author(s):  
Caleb Sturge ◽  
Edward Quigley MD PhD ◽  
Richard H Wiggins
2009 ◽  
Vol 124 (2) ◽  
pp. 119-125 ◽  
Author(s):  
A P George ◽  
R De

AbstractObjective:We aimed to review the history of anatomical dissection, and to examine how modern educational techniques will change the way temporal bone dissection is taught to otolaryngology trainees.Method:Review of the literature using Medline, Embase and PubMed database searches.Results:Temporal bone anatomy has traditionally been taught using cadaveric specimens. However, resources such as three-dimensional reconstructed models and ‘virtual reality’ temporal bone simulators have a place in educating the otolaryngology trainee.Conclusion:We should encourage the use of fresh frozen cadaveric temporal bone specimens for future otologists. Artificial three-dimensional models and virtual reality temporal bone simulators can be used to educate junior trainees, thus conserving the scarce resource of cadaveric bones.


B-ENT ◽  
2020 ◽  
Vol 16 (2) ◽  
pp. 103-108
Author(s):  
Florence Rogister ◽  
◽  
Caroline Salmon ◽  
Alexandre Ghuysen ◽  
Peter J. Andrews ◽  
...  

Author(s):  
Tomi Timonen ◽  
Aarno Dietz ◽  
Pia Linder ◽  
Antti Lehtimäki ◽  
Heikki Löppönen ◽  
...  

Abstract Purpose There is only limited data on the application of virtual reality (VR) for the evaluation of temporal bone anatomy. The aim of the present study was to compare the VR environment to traditional cross-sectional viewing of computed tomography images in a simulated preoperative planning setting in novice and expert surgeons. Methods A novice (n = 5) and an expert group (n = 5), based on their otosurgery experience, were created. The participants were asked to identify 24 anatomical landmarks, perform 11 distance measurements between surgically relevant anatomical structures and 10 fiducial markers on five cadaver temporal bones in both VR environment and cross-sectional viewings in PACS interface. The data on performance time and user-experience (i.e., subjective validation) were collected. Results The novice group made significantly more errors (p < 0.001) and with significantly longer performance time (p = 0.001) in cross-sectional viewing than the expert group. In the VR environment, there was no significant differences (errors and time) between the groups. The performance of novices improved faster in the VR. The novices showed significantly faster task performance (p = 0.003) and a trend towards fewer errors (p = 0.054) in VR compared to cross-sectional viewing. No such difference between the methods were observed in the expert group. The mean overall scores of user-experience were significantly higher for VR than cross-sectional viewing in both groups (p < 0.001). Conclusion In the VR environment, novices performed the anatomical evaluation of temporal bone faster and with fewer errors than in the traditional cross-sectional viewing, which supports its efficiency for the evaluation of complex anatomy.


2020 ◽  
pp. bmjstel-2020-000592
Author(s):  
Bridget Copson ◽  
Sudanthi Wijewickrema ◽  
Laurence Sorace ◽  
Randall Jones ◽  
Stephen O'Leary

ObjectiveTo investigate the effectiveness of a virtual reality (VR), three-dimensional (3D) clinically orientated temporal bone anatomy module, including an assessment of different display technologies.MethodsA clinically orientated, procedural and interactive anatomy module was generated from a micro-CT of a cadaveric temporal bone. The module was given in three different display technologies; 2D, 3D with monoscopic vision, and 3D with stereoscopic vision. A randomised control trial assessed the knowledge acquisition and attitudes of 47 medical students though a pretutorial and post-tutorial questionnaire. The questionnaire included questions identifying anatomic structures as well as understanding structural relations and clinical relevance. Furthermore, a five-point Likert scale assessed the students’ attitudes to the module and alternative learning outcomes, such as interest in otology and preparedness for clinical rotations.ResultsAs a whole cohort, the total test score improved significantly, with a large effect size (p≤0.005, Cohen’s d=1.41). The 23 students who returned the retention questionnaire had a significant improvement in total test score compared with their pretutorial score, with a large effect size (p≤0.005, Cohen’s d=0.83). Display technology did not influence the majority of learning outcomes, with the exception of 3D technologies, showing a significantly improvement in understanding of clinical relevance and structural relations (p=0.034). Students preferred 3D technologies for ease of use, perceived effectiveness and willingness to use again.ConclusionsThe developed VR temporal bone anatomy tutor was an effective self-directed education tool. 3D technology remains valuable in facilitating spatial learning and superior user satisfaction.


2020 ◽  
pp. 000348942097021
Author(s):  
Steven Arild Wuyts Andersen ◽  
Maxwell Bergman ◽  
Jason P. Keith ◽  
Kimerly A. Powell ◽  
Brad Hittle ◽  
...  

Objectives: Virtual reality (VR) simulation for patient-specific pre-surgical planning and rehearsal requires accurate segmentation of key surgical landmark structures such as the facial nerve, ossicles, and cochlea. The aim of this study was to explore different approaches to segmentation of temporal bone surgical anatomy for patient-specific VR simulation. Methods: De-identified, clinical computed tomography imaging of 9 pediatric patients aged 3 months to 12 years were obtained retrospectively. The patients represented normal anatomy and key structures were manually segmented using open source software. The OTOPLAN (CAScination AG, Bern, Switzerland) otological planning software was used for guided segmentation. An atlas-based algorithm was used for computerized, automated segmentation. Experience with the different approaches as well as time and resulting models were compared. Results: Manual segmentation was time consuming but also the most flexible. The OTOPLAN software is not designed specifically for our purpose and therefore the number of structures that can be segmented is limited, there was some user-to-user variation as well as volume differences compared with manual segmentation. The atlas-based automated segmentation potentially allows a full range of structures to be segmented and produces segmentations comparable to those of manual segmentation with a processing time that is acceptable because of the minimal user interaction. Conclusion: Segmentation is fundamental for patient-specific VR simulation for pre-surgical planning and rehearsal in temporal bone surgery. The automated segmentation algorithm currently offers the most flexible and feasible approach and should be implemented. Further research is needed in relation to cases of abnormal anatomy. Level of evidence: 4


Author(s):  
Nicolás González Romo ◽  
Franco Ravera Zunino

AbstractVirtual reality (VR) has increasingly been implemented in neurosurgical practice. A patient with an unruptured anterior communicating artery (AcoA) aneurysm was referred to our institution. Imaging data from computed tomography angiography (CTA) was used to create a patient specific 3D model of vascular and skull base anatomy, and then processed to a VR compatible environment. Minimally invasive approaches (mini-pterional, supraorbital and mini-orbitozygomatic) were simulated and assessed for adequate vascular exposure in VR. Using an eyebrow approach, a mini-orbitozygomatic approach was performed, with clip exclusion of the aneurysm from the circulation. The step-by-step process of VR planning is outlined, and the advantages and disadvantages for the neurosurgeon of this technology are reviewed.


Author(s):  
Sebastian Halm ◽  
David Haberthür ◽  
Elisabeth Eppler ◽  
Valentin Djonov ◽  
Andreas Arnold

Abstract Introduction This pilot study explores whether a human Thiel-embalmed temporal bone is suitable for generating an accurate and complete data set with micro-computed tomography (micro-CT) and whether solid iodine-staining improves visualization and facilitates segmentation of middle ear structures. Methods A temporal bone was used to verify the accuracy of the imaging by first digitally measuring the stapes on the tomography images and then physically under the microscope after removal from the temporal bone. All measurements were compared with literature values. The contralateral temporal bone was used to evaluate segmentation and three-dimensional (3D) modeling after iodine staining and micro-CT scanning. Results The digital and physical stapes measurements differed by 0.01–0.17 mm or 1–19%, respectively, but correlated well with the literature values. Soft tissue structures were visible in the unstained scan. However, iodine staining increased the contrast-to-noise ratio by a factor of 3.7 on average. The 3D model depicts all ossicles and soft tissue structures in detail, including the chorda tympani, which was not visible in the unstained scan. Conclusions Micro-CT imaging of a Thiel-embalmed temporal bone accurately represented the entire anatomy. Iodine staining considerably increased the contrast of soft tissues, simplified segmentation and enabled detailed 3D modeling of the middle ear.


2021 ◽  
Vol 6 ◽  
pp. 247275122110368
Author(s):  
Sergio Olate ◽  
Claudio Huentequeo-Molina ◽  
Alejandro Unibazo ◽  
Juan Pablo Alister

Study Design: Case Report Objective: To present a patient with long-standing TMJ dislocation and pseudoarthrosis in the temporal bone treated with orthognathic surgery and unilateral joint replacement. Method: The patient, a 52-year-old female, came to our department to treat facial asymmetry and oral rehabilitation. The patient reported early facial trauma at 7 years old showing partial edentoulism, dental occlusion class III and a 19 mm mandibular midline deviation. Cone beam computed tomography showed the left TMJ in long-standing dislocation into the fossa temporalis, creating a new articular fossa in the temporal bone and adaptation of the hard and soft tissue. Results: Orthognathic surgery and TMJ replacement using a patient-specific implant and dental rehabilitation were planned; surgery was performed with no complications, and the 1-year follow-up showed that this treatment was a good option for long-standing TMJ dislocation. Conclusion: The long-term TMJ dislocation can be successfully treated by TMJ replacement using a patient-specific implant to obtain facial balance and oral function and avoid relapse.


Sign in / Sign up

Export Citation Format

Share Document