Development of the Assessment of Capacity for Myoelectric Control Version 4 for Use in Patients with Multi-Grip Prosthetic Hands

Author(s):  
Liselotte Hermansson
2021 ◽  
Vol 11 (10) ◽  
pp. 4464
Author(s):  
Viritpon Srimaneepong ◽  
Artak Heboyan ◽  
Azeem Ul Yaqin Syed ◽  
Hai Anh Trinh ◽  
Pokpong Amornvit ◽  
...  

The loss of one or multiple fingers can lead to psychological problems as well as functional impairment. Various options exist for replacement and restoration after hand or finger loss. Prosthetic hand or finger prostheses improve esthetic outcomes and the quality of life for patients. Myoelectrically controlled hand prostheses have been used to attempt to produce different movements. The available articles (original research articles and review articles) on myoelectrically controlled finger/hand prostheses from January 1922 to February 2021 in English were reviewed using MEDLINE/PubMed, Web of Science, and ScienceDirect resources. The articles were searched using the keywords “finger/hand loss”, “finger prosthesis”, “myoelectric control”, and “prostheses” and relevant articles were selected. Myoelectric or electromyography (EMG) signals are read by myoelectrodes and the signals are amplified, from which the muscle’s naturally generated electricity can be measured. The control of the myoelectric (prosthetic) hands or fingers is important for artificial hand or finger movement; however, the precise control of prosthetic hands or fingers remains a problem. Rehabilitation after multiple finger loss is challenging. Implants in finger prostheses after multiple finger loss offer better finger prosthesis retention. This article presents an overview of myoelectric control regarding finger prosthesis for patients with finger implants following multiple finger loss.


2018 ◽  
Vol 15 (5) ◽  
pp. 056028 ◽  
Author(s):  
Leonie Schmalfuss ◽  
Janne Hahne ◽  
Dario Farina ◽  
Manuel Hewitt ◽  
Andreas Kogut ◽  
...  

Author(s):  
Yin-lai Jiang ◽  
Shintaro Sakoda ◽  
Masami Togane ◽  
Soichiro Morishita ◽  
Hiroshi Yokoi

2014 ◽  
Vol 11 (02) ◽  
pp. 1450013 ◽  
Author(s):  
Shunchong Li ◽  
Jiayuan He ◽  
Xinjun Sheng ◽  
Honghai Liu ◽  
Xiangyang Zhu

The paper proposes a synergy-based myoelectric control strategy for prosthetic hands. Synergy is first reviewed in the context of hand movement, then postural synergy-based proportional and simultaneous control has been introduced to prosthetic manipulation via the principal component analysis (PCA) framework. Experiments have been comprehensively carried out on lab-developed prosthetic hand called SJU-5 to evaluate the proposed method. It is evident that the synergy driven myoelectric control achieves the targeted objectives and performs well on the SJU-5 prosthetic hand.


1992 ◽  
Vol 35 (4) ◽  
pp. 892-902 ◽  
Author(s):  
Robert Allen Fox ◽  
Lida G. Wall ◽  
Jeanne Gokcen

This study examined age-related differences in the use of dynamic acoustic information (in the form of formant transitions) to identify vowel quality in CVCs. Two versions of 61 naturally produced, commonly occurring, monosyllabic English words were created: a control version (the unmodified whole word) and a silent-center version (in which approximately 62% of the medial vowel was replaced by silence). A group of normal-hearing young adults (19–25 years old) and older adults (61–75 years old) identified these tokens. The older subjects were found to be significantly worse than the younger subjects at identifying the medial vowel and the initial and final consonants in the silent-center condition. These results support the hypothesis of an age-related decrement in the ability to process dynamic perceptual cues in the perception of vowel quality.


2020 ◽  
Vol 19 (10) ◽  
pp. 1965-1986
Author(s):  
T.A. Komkina ◽  
M.A. Nikonova ◽  
M.G. Dubinina

Subject. The article analyzes development trends in certain types of service robots, namely, hybrid UAVs, bionic prosthetic hands, robotic vacuum cleaners. Objectives. We focus on identifying the main trends in the development of certain types of service robots, building dynamic models of their technical indicators and models of dependence of their price and weight on absolute characteristics and technical parameters. Methods. The study employs methods of correlation and multiple regression analysis. The data of the IFR, the Remotely Piloted Aircraft System, and websites of robot manufacturers serve as the informational basis of the paper. Results. The modeling unveils positive correlation between the integrated indicator of the technical level of hybrid UAVs of convertiplane type and the wingspan. The analysis of modern bionic prosthetic hands shows that the developers focus on optimizing the structure of the prosthetic, however, as the functions of the hand improve, the weight of bionic hand increases. The main factors influencing the price of robot vacuum cleaners are their power, weight, and operating hours. Conclusions. The unit price of a complex indicator of the technical level of hybrid UAVs is lower than the corresponding indicator of fixed-wing UAVs, reflecting a greater efficiency of hybrid UAVs. The analysis of technical indicators of robotic prosthetics (using the case of bionic hands) shows that any improvement of functional characteristics leads to deterioration of weight. The analysis of technical and economic indicators of robotic vacuum cleaners reveals a positive correlation between the price and weight, operating hours and power.


Sign in / Sign up

Export Citation Format

Share Document