Relative contribution of emphysema and airway disease to disease severity in COPD patients GOLD stages I to IV using quantitative computed tomography

Author(s):  
Christian Brunner ◽  
Christian Daniel Brunner ◽  
Philip Konietzke ◽  
Felix Wünnemann ◽  
Claus-Peter Heussel ◽  
...  
2005 ◽  
Vol 40 (3) ◽  
pp. 211-218 ◽  
Author(s):  
Neal Jain ◽  
Ronina A. Covar ◽  
Melanie C. Gleason ◽  
John D. Newell ◽  
Erwin W. Gelfand ◽  
...  

2021 ◽  
Author(s):  
Sujeong Kim ◽  
Sanghun Choi ◽  
Taewoo Kim ◽  
Kwang Nam Jin ◽  
Sang-Heon Cho ◽  
...  

Abstract Background: Asthma comprises heterogeneous inflammatory airway disorders whose classification has not been established. Quantitative computed tomography (QCT) methods can differentiate lung disease using accurate assessment of location, extent, and severity of the disease. This study aimed to identify heterogeneous asthmatic groups by QCT metrics of airway and parenchymal structure, which is associated with radiologists’ visual analysis and bronchodilator responses in a prospective design.Methods: Using the input from QCT-based metrics, including hydraulic diameter (Dh), luminal wall thickness (WT), functional small airway disease (fSAD), and emphysematous lung (Emph), a cluster analysis was performed and compared with grouping based on site of airway involvement and remodeling evaluated by radiologists.Results: 61 asthmatics were grouped into four clusters with different clinical severities. From C1 to C4, more severe lung function deterioration, higher fixed obstruction rate, and more frequent asthma exacerbation in 5-year follow-up were observed. C1 presented non-severe asthma with increased WT, Dh of proximal airways, and fSAD. C2 was mixed with non-severe and severe asthma, which had reserved bronchodilator responses of proximal airways. C3 and C4 presented severe asthmatics that exhibited reduced Dh of proximal airway and its bronchodilator responsiveness; C3 was severe allergic asthma without fSAD, while C4 was ex-smokers with significantly high fSAD% and Emph%. These clusters were correlated with the grouping by radiologists and their clinical outcomes.Conclusions: Four QCT imaging-based clusters with distinct structural and functional changes in proximal and small airways can stratify heterogeneous asthmatics and may serve as complementary tools for predicting future asthma outcomes.


2016 ◽  
Vol 48 (1) ◽  
pp. 92-103 ◽  
Author(s):  
Deepak R. Subramanian ◽  
Sumit Gupta ◽  
Dorothe Burggraf ◽  
Suzan J. vom Silberberg ◽  
Irene Heimbeck ◽  
...  

EvA (Emphysema versus Airway disease) is a multicentre project to study mechanisms and identify biomarkers of emphysema and airway disease in chronic obstructive pulmonary disease (COPD). The objective of this study was to delineate objectively imaging-based emphysema-dominant and airway disease-dominant phenotypes using quantitative computed tomography (QCT) indices, standardised with a novel phantom-based approach.441 subjects with COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages 1–3) were assessed in terms of clinical and physiological measurements, laboratory testing and standardised QCT indices of emphysema and airway wall geometry.QCT indices were influenced by scanner non-conformity, but standardisation significantly reduced variability (p<0.001) and led to more robust phenotypes. Four imaging-derived phenotypes were identified, reflecting “emphysema-dominant”, “airway disease-dominant”, “mixed” disease and “mild” disease. The emphysema-dominant group had significantly higher lung volumes, lower gas transfer coefficient, lower oxygen (PO2) and carbon dioxide (PCO2) tensions, higher haemoglobin and higher blood leukocyte numbers than the airway disease-dominant group.The utility of QCT for phenotyping in the setting of an international multicentre study is improved by standardisation. QCT indices of emphysema and airway disease can delineate within a population of patients with COPD, phenotypic groups that have typical clinical features known to be associated with emphysema-dominant and airway-dominant disease.


2013 ◽  
Vol 22 (01) ◽  
pp. 13-17
Author(s):  
J. M. Patsch ◽  
R. Kocijan ◽  
H. Resch ◽  
J. Haschka

ZusammenfassungKnochenstabilität ist durch Knochenvolumen und Mikroarchitektur des Knochens determiniert. Mittels HR-pQCT (high resolution peripheral quantitative computed tomography) steht eine nicht invasive Methode zur Verfügung, um die Mikroarchitektur des Knochens darzustellen. Die Resultate aus zahlreichen Studien geben Rückschlüsse auf unterschiedliche Strukturalterationen im Rahmen von Erkrankungen, die mit einem erhöhten Frakturrisiko einhergehen. Die Knochendichtemessung mittels DXA spiegelt das Frakturrisiko oft nicht adäquat wider. Umso entscheidender ist es, Risikofaktoren in der Wahl der Therapie zu berücksichtigen. Die klinische Relevanz der Resultate aus HR-pQCT-Messungen besteht derzeit dahingehend, dass wertvolle Informationen über Veränderungen der Mikroarchitektur auf Forschungsebene erhoben werden.


Sign in / Sign up

Export Citation Format

Share Document