scholarly journals EFEKTIVITAS Pseudomonas sp. BOT4 DALAM MENDEGRADASI MINYAK JELANTAH MENGGUNAKAN SUMBER NITROGEN NATRIUM NITRAT DAN YEAST EXTRACT

2019 ◽  
Vol 8 (3) ◽  
Author(s):  
Donatus Tia Harfan ◽  
Diah Wulandari Rousdy ◽  
Rikhsan Kurniatuhadi

Jelantah is the residual waste of cooking oil. The disposal of untreated waste directly into the environment has the potential to promote damage such as water channels clogging and water body pollution. Form of waste treatment such as biodegradation can be done using potential bacteria such as Pseudomonas spp. which has been known for being effectively in decomposing organic waste. This study aimed to observe the ability of Pseudomonas sp. BOT4 in degrading jelantah with different nitrogen sources i.e. NaNO3 and yeast extract. This study was carried out from August to October 2018. The used cooking oil samples were homemade with deep frying method and the isolate samples were collected from used cooking oil-contaminated sewer water. Split plot design was used with time of incubation as main plots and nitrogen sources as subplots. The parameters observed were cell density and degraded oil weight. The results obtained stated that nitrogen sources of NaNO3 and yeast extract given optimum effect on cell density of Pseudomonas sp. BOT4 on day three each with OD600 value of 1,361 and 2,300. Nevertheless both nitrogen sources did not really give real effect on final weight of degraded oil, each with weight of 1,28 g dan 1,09 g.

2016 ◽  
Author(s):  
Wenfa Ng ◽  
Yen-Peng Ting

Microbes for environmental research should be cultured in growth media with characteristics (e.g., pH, ionic strength, and organic and ionic composition) as close to their original habitat as possible. Additionally, the medium should also enable high cell density to be obtained - needed for providing sufficient cells in subsequent experiments. This in-progress report describes the formulation of a medium with an environmentally-relevant composition (lack of complex organics), and that allows aerobic high cell density cultivation of Escherichia coli DH5α in shake flasks. The formulated medium comprises four components: a buffer system (K2HPO4: 12.54 g/L and KH2PO4: 2.31 g/L), vitamins (yeast extract: 12.0 g/L), salts (NaCl: 5.0 g/L and MgSO4: 0.24 g/L), and carbon and nitrogen sources (D-Glucose: 6.0 g/L and NH4Cl: 1.5 g/L). Notable characteristics of this medium were: high capacity phosphate buffer system (89 mM phosphate); 1:1 molar ratio between D-Glucose and NH4Cl; and yeast extract providing trace elements and a secondary carbon and nitrogen source. Growth experiments revealed that an OD600nm of 9 was attained after 24 hours of cultivation at 37 oC. Glucose and NH4Cl serve as primary carbon and nitrogen sources for this phase of growth. After 48 hours, the OD600nm reached 11, where carbohydrates, lipids and proteins in yeast extract provided the nutrients for biomass formation. Broth’s pH varied between 5.5 and 7.8 during cultivation, which was in the range conducive for E. coli growth. In comparison, the OD600nm of E. coli reached 1.4, 3.2, and 9.2 in three commonly used complex media; Nutrient Broth, LB Lennox, and Tryptic Soy Broth, respectively, over 48 hours under identical culture conditions. In addition, the formulated medium was able to maintain a large viable cell population for a longer period of time (three days) compared to Tryptic Soy Broth. Thus, preliminary data suggested that the formulated medium holds potential for use as a high cell density aerobic growth medium for Gram-negative bacteria.


2018 ◽  
Vol 54 (4A) ◽  
pp. 40
Author(s):  
Tran Bao Khanh

Exopolysaccharide (EPS) production ability of Lactobacillus plantarumT10 was studied. The supplement of some sugars (lactose, saccharose, and glucose) gave the positive effects on EPS production of L. plantarum T10, in which the addition of lactose 4 % resulted in the most efficiency for EPS yield (274.83 μg/mL). The addition of 0.4 % of yeast extract into culture medium with 4 % lactose provided the highest EPS yields compared to other nitrogen sources (peptone, beef extract), which were 378.32 mg/mL. The optimal conditions for EPS production of L. plantarum T10 in MRS broth with 4 % of lactose and 0.4 % yeast extract supplement were also studied. The results indicated that the highest EPS yield (417.11 mg/L) was obtained in the conditions of 106 CFU/ml initial cell density, temperature of 35 oC, pH 5.5 and 48 h incubation.


2017 ◽  
Author(s):  
Wenfa Ng ◽  
Yen-Peng Ting

Microbes for environmental research should be cultured in growth media with characteristics (e.g., pH, ionic strength, and ionic composition) as close to their original habitat as possible. Additionally, the medium should also enable high cell density to be obtained, which is needed for providing sufficient cells in subsequent experiments. This in-progress report describes the formulation of a medium with an environmentally relevant composition (i.e., lack of complex organics), and that allows aerobic high cell density cultivation of Escherichia coli DH5α (ATCC 53868) in shake flasks. The formulated medium comprises four components: a buffer system (K2HPO4: 12.54 g/L and KH2PO4: 2.31 g/L), vitamins (yeast extract: 12.0 g/L), salts (NaCl: 5.0 g/L and MgSO4: 0.24 g/L), and carbon and nitrogen sources (D-Glucose: 6.0 g/L and NH4Cl: 1.5 g/L). Notable characteristics of this medium were: high capacity phosphate buffer system (89 mM phosphate); 1:1 molar ratio between D-Glucose and NH4Cl; and yeast extract providing trace elements and a secondary carbon and nitrogen source. Growth experiments revealed that an OD600nm of 9 was obtained after 24 hours of cultivation at 37 oC. Glucose and NH4Cl served as primary carbon and nitrogen sources for this growth phase. After 48 hours, the OD600nm reached 11, where carbohydrates, lipids and proteins in yeast extract provided the nutrients for biomass formation. Broth’s pH varied between 5.5 and 7.8 during cultivation, which is conducive for E. coli growth. In comparison, the OD600nm of E. coli reached 1.4, 3.2, and 9.2 in three commonly used complex media; Nutrient Broth, LB Lennox, and Tryptic Soy Broth, respectively, over 48 hours under identical culture conditions. In addition, the formulated medium was able to maintain a large viable cell population for a longer period of time (three days) compared to Tryptic Soy Broth. Thus, preliminary data suggested that the formulated medium holds potential for use as a high cell density aerobic growth medium for Gram-negative bacteria.


2017 ◽  
Author(s):  
Wenfa Ng ◽  
Yen-Peng Ting

Microbes for environmental research should be cultured in growth media with characteristics (e.g., pH, ionic strength, and ionic composition) as close to their original habitat as possible. Additionally, the medium should also enable high cell density to be obtained, which is needed for providing sufficient cells in subsequent experiments. This in-progress report describes the formulation of a medium with an environmentally relevant composition (i.e., lack of complex organics), and that allows aerobic high cell density cultivation of Escherichia coli DH5α (ATCC 53868) in shake flasks. The formulated medium comprises four components: a buffer system (K2HPO4: 12.54 g/L and KH2PO4: 2.31 g/L), vitamins (yeast extract: 12.0 g/L), salts (NaCl: 5.0 g/L and MgSO4: 0.24 g/L), and carbon and nitrogen sources (D-Glucose: 6.0 g/L and NH4Cl: 1.5 g/L). Notable characteristics of this medium were: high capacity phosphate buffer system (89 mM phosphate); 1:1 molar ratio between D-Glucose and NH4Cl; and yeast extract providing trace elements and a secondary carbon and nitrogen source. Growth experiments revealed that an OD600nm of 9 was obtained after 24 hours of cultivation at 37 oC. Glucose and NH4Cl served as primary carbon and nitrogen sources for this growth phase. After 48 hours, the OD600nm reached 11, where carbohydrates, lipids and proteins in yeast extract provided the nutrients for biomass formation. Broth’s pH varied between 5.5 and 7.8 during cultivation, which is conducive for E. coli growth. In comparison, the OD600nm of E. coli reached 1.4, 3.2, and 9.2 in three commonly used complex media; Nutrient Broth, LB Lennox, and Tryptic Soy Broth, respectively, over 48 hours under identical culture conditions. In addition, the formulated medium was able to maintain a large viable cell population for a longer period of time (three days) compared to Tryptic Soy Broth. Thus, preliminary data suggested that the formulated medium holds potential for use as a high cell density aerobic growth medium for Gram-negative bacteria.


2017 ◽  
Author(s):  
Wenfa Ng ◽  
Yen-Peng Ting

Microbes for environmental research should be cultured in growth media with characteristics (e.g., pH, ionic strength, and ionic composition) as close to their original habitat as possible. Additionally, the medium should also enable high cell density to be obtained, which is needed for providing sufficient cells in subsequent experiments. This in-progress report describes the formulation of a medium with an environmentally relevant composition (i.e., lack of complex organics), and that allows aerobic high cell density cultivation of Escherichia coli DH5α (ATCC 53868) in shake flasks. The formulated medium comprises four components: a buffer system (K2HPO4: 12.54 g/L and KH2PO4: 2.31 g/L), vitamins (yeast extract: 12.0 g/L), salts (NaCl: 5.0 g/L and MgSO4: 0.24 g/L), and carbon and nitrogen sources (D-Glucose: 6.0 g/L and NH4Cl: 1.5 g/L). Notable characteristics of this medium were: high capacity phosphate buffer system (89 mM phosphate); 1:1 molar ratio between D-Glucose and NH4Cl; and yeast extract providing trace elements and a secondary carbon and nitrogen source. Growth experiments revealed that an OD600nm of 9 was obtained after 24 hours of cultivation at 37 oC. Glucose and NH4Cl served as primary carbon and nitrogen sources for this growth phase. After 48 hours, the OD600nm reached 11, where carbohydrates, lipids and proteins in yeast extract provided the nutrients for biomass formation. Broth’s pH varied between 5.5 and 7.8 during cultivation, which is conducive for E. coli growth. In comparison, the OD600nm of E. coli reached 1.4, 3.2, and 9.2 in three commonly used complex media; Nutrient Broth, LB Lennox, and Tryptic Soy Broth, respectively, over 48 hours under identical culture conditions. In addition, the formulated medium was able to maintain a large viable cell population for a longer period of time (three days) compared to Tryptic Soy Broth. Thus, preliminary data suggested that the formulated medium holds potential for use as a high cell density aerobic growth medium for Gram-negative bacteria.


2016 ◽  
Author(s):  
Wenfa Ng ◽  
Yen-Peng Ting

Microbes for environmental research should be cultured in growth media with characteristics (e.g., pH, ionic strength, and organic and ionic composition) as close to their original habitat as possible. In addition, the medium should also enable high cell density to be obtained - needed for providing sufficient cells in subsequent experiments. This in-progress report describes the formulation of a medium with an environmentally-relevant composition (i.e., lack of complex organics), and that allows aerobic high cell density cultivation of Escherichia coli DH5α (ATCC 53868) in shake flasks. The formulated medium comprises four components: a buffer system (K2HPO4: 12.54 g/L and KH2PO4: 2.31 g/L), vitamins (yeast extract: 12.0 g/L), salts (NaCl: 5.0 g/L and MgSO4: 0.24 g/L), and carbon and nitrogen sources (D-Glucose: 6.0 g/L and NH4Cl: 1.5 g/L). Notable characteristics of this medium were: high capacity phosphate buffer system (89 mM phosphate); 1:1 molar ratio between D-Glucose and NH4Cl; and yeast extract providing trace elements and a secondary carbon and nitrogen source. Growth experiments revealed that an OD600nm of 9 was obtained after 24 hours of cultivation at 37 oC. Glucose and NH4Cl served as primary carbon and nitrogen sources for this phase of growth. After 48 hours, the OD600nm reached 11, where carbohydrates, lipids and proteins in yeast extract provided the nutrients for biomass formation. Broth’s pH varied between 5.5 and 7.8 during cultivation, which was in the range conducive for E. coli growth. In comparison, the OD600nm of E. coli reached 1.4, 3.2, and 9.2 in three commonly used complex media; Nutrient Broth, LB Lennox, and Tryptic Soy Broth, respectively, over 48 hours under identical culture conditions. In addition, the formulated medium was able to maintain a large viable cell population for a longer period of time (three days) compared to Tryptic Soy Broth. Thus, preliminary data suggested that the formulated medium holds potential for use as a high cell density aerobic growth medium for Gram-negative bacteria.


2010 ◽  
Vol 40 (3) ◽  
pp. 749-762
Author(s):  
Hirokazu GOTO ◽  
Yuichi HATAYA ◽  
Yasuyuki YOKOTA ◽  
Takeshi MIZUNOYA ◽  
Yoshiro HIGANO

2021 ◽  
Vol 170 ◽  
pp. 302-314
Author(s):  
Adeyinka S. Yusuff ◽  
Aman K. Bhonsle ◽  
Jayati Trivedi ◽  
Dinesh P. Bangwal ◽  
Lok P. Singh ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3703
Author(s):  
Ming-Chien Hsiao ◽  
Wei-Ting Lin ◽  
Wei-Cheng Chiu ◽  
Shuhn-Shyurng Hou

In this study, ultrasound was used to accelerate two-stage (esterification–transesterification) catalytic synthesis of biodiesel from used cooking oil, which originally had a high acid value (4.35 mg KOH/g). In the first stage, acid-catalyzed esterification reaction conditions were developed with a 9:1 methanol/oil molar ratio, sulfuric acid dosage at 2 wt %, and a reaction temperature of 60 °C. Under ultrasound irradiation for 40 min, the acid value was effectively decreased from 4.35 to 1.67 mg KOH/g, which was decreased to a sufficient level (<2 mg KOH/g) to avoid the saponification problem for the subsequent transesterification reaction. In the following stage, base-catalyzed transesterification reactions were carried out with a 12:1 methanol/oil molar ratio, a sodium hydroxide dosage of 1 wt %, and a reaction temperature of 65 °C. Under ultrasound-assisted transesterification for 40 min, the conversion rate of biodiesel reached 97.05%, which met the requirement of EN 14214 standard, i.e., 96.5% minimum. In order to evaluate and explore the improvement of the ultrasound-assisted two-stage (esterification–transesterification) process in shortening the reaction time, additional two-stage biodiesel synthesis experiments using the traditional mechanical stirring method under the optimal conditions were further carried out in this study. It was found that, under the same optimal conditions, using the ultrasound-assisted two-stage process, the total reaction time was significantly reduced to only 80 min, which was much shorter than the total time required by the conventional method of 140 min. It is worth noting that compared with the traditional method without ultrasound, the intensification of the ultrasound-assisted two-stage process significantly shortened the total time from 140 min to 80 min, which is a reduction of 42.9%. It was concluded that the ultrasound-assisted two-stage (esterification–transesterification) catalytic process is an effective and time-saving method for synthesizing biodiesel from used cooking oil with a high acid value.


Sign in / Sign up

Export Citation Format

Share Document