Low-Dose Radiation Therapy to Treat COVID-19: Results of the First Phase of Clinical Trials

Author(s):  
Ghaznavi H ◽  

Using low-dose radiation therapy (LDRT) to treat inflammation, pneumonia, and coronavirus disease 2019 (COVID-19) has been investigated. Results have revealed that LDRT can improve inflammation in different line cells, animals, and humans. It was demonstrated that LDRT with a single dose (0.3-1 Gy) to the lungs could treat pneumonia resulting from COVID-19 by avoiding normal tissue toxicities. These suggested values of doses are obtained from the historical use of ionizing radiation for pneumonia [1]. A clinical study recently treated five patients with COVID-19 in the age range of 64-96 years; the lungs of these patients were exposed to 1.5 Gy of radiation in one fraction. Results showed that their respiratory conditions were quickly improved in four patients in the first 24 hours of exposure. The results of blood tests and imaging also confirmed the positive effect of LDRT on COVID-19 treatment [2]. Short course results of another study carried out on five patients with COVID-19 aged over 60 years, who underwent national COVID-19 therapy protocols, showed that using 0.5 Gy of radiation in one fraction led to the improvement of four patients in the first few days after exposure. Apart from that, they were discharged from the hospital with an average of 6 days, and no radiation toxicity was observed in them [3]. Another clinical investigation has used LDRT on nine patients to treat COVID-19. In this study, patients received 1 Gy to total lungs, and the SatO2/FiO2 index of these patients was evaluated. Results showed that this index significantly improved 72 hours and one week after LDRT, and inflammation of the lungs decreased one week after radiation therapy. Compared to patients who did not receive LDRT, the median days of hospitalization of patients who received LDRT was reduced by approximately one-fifth. Among these patients, seven were discharged, and two patients died [4]. The incidence of cancers such as lung, esophagus, and breast is one of the controversial subjects surrounding the use of LDRT in COVID-19 treatment. According to the Biological Effects of Ionization Radiation VII (BEIR VII) model, the risk of lung cancer was estimated for patients with COVID-19 whose lungs were irradiated to 0.5 Gy. The incidence of lung cancer can increase by 0.84% and 2.3% for males and females aged above 60 years, respectively. On the other hand, for young patients aged 25 years, the incidence of lung cancer was estimated at 1.1% and 3% for males and females, respectively [5]. According to this model, with an increase in the dose received by the lungs, the risk of lung cancer increases linearly; therefore, the incidence of lung cancer for patients whose whole lung receives a dose of 1.5 Gy will be three times for those who have received a dose of 0.5 Gy [6]. Based on these results, exposure of the lungs to the dose in the range 0.5-1.5 Gy can increase the risk of lung cancer up to 9% and 7% for female patients and 3.3% and 2.5% for male patients aged 25 and 65, respectively. Of course, it should be noted that smoking should be considered in estimating the risk of lung cancer in addition to the radiation factor. Besides the lungs, the heart and esophagus may also be exposed to radiation, increasing the risk of esophageal cancer and heart disease. Nevertheless, blood factors, smoking, and a history of heart disease can be influential in the incidence of heart disease in addition to radiation [7,8]. Results of these clinical trials have shown that the recommended dose (0.5-1.5 Gy) can increase lung cancer up to 9%. As one of the possible effects of ionizing radiation is carcinogenicity, no threshold has been defined for its occurrence, but another issue in radiobiology is the risk-benefit of ionizing radiation. As no radiation toxicities were reported in the said clinical studies, it seems that LDRT is safe; however, more clinical studies are needed to prove this claim. We should not hastily recommend the use of LDRT as an adjuvant treatment for COVID-19. To make a definite comment and evaluate the feasibility and efficacy of LDRT to treat COVID-19, we need more clinical studies with many patients.

2021 ◽  
pp. 1-4
Author(s):  
Paolo Farace ◽  
Stefano Tamburin

Amyloid-β deposition is one of the neuropathological hallmarks of Alzheimer’s disease (AD), but pharmacological strategies toward its reduction are poorly effective. Preclinical studies indicate that low-dose radiation therapy (LD-RT) may reduce brain amyloid-β. Animal models and proof-of-concept preliminary data in humans have shown that magnetic resonance guided focused ultrasound (MRgFUS) can reversibly open the blood-brain-barrier and facilitate the delivery of targeted therapeutics to the hippocampus, to reduce amyloid-β and promote neurogenesis in AD. Ongoing clinical trials on AD are exploring whole-brain LD-RT, which may damage radio-sensitive structures, i.e., hippocampus and white matter, thus contributing to reduced neurogenesis and radiation-induced cognitive decline. However, selective irradiation of cortical amyloid-β plaques through advanced LD-RT techniques might spare the hippocampus and white matter. We propose combined use of advanced LD-RT and targeted drug delivery through MRgFUS for future clinical trials to reduce amyloid-β deposition in AD since its preclinical stages.


Author(s):  
Hamid Ghaznavi ◽  
Farideh Elahimanesh ◽  
Jamil Abdolmohammadi ◽  
Meysam Mirzaie ◽  
Sadegh Ghaderi

Abstract Background: The Coronavirus disease 2019 (COVID-19) is spreading rapidly throughout the world. Lung is the primary organ which the COVID-19 virus affects and leads to pneumonia, an acute respiratory distress syndrome. COVID-19 infects the lower respiratory system, and the lung’s response to this infection is recruiting macrophages and monocytes leading to inflammation, this response causes widespread damage to the lung’s airways. Aim: The purpose of this study is to review studies of using low-dose radiation as a treatment for the inflammation of the tissue and pneumonia resulting from COVID-19. These studies were compared with the risk of developing lung cancer during performed dose for the treatment of COVID-19 in radiation therapy. Materials and methods: Our study focused on in vitro, in vivo and clinical reports of using low-dose radiation for the treatment of inflammation, pneumonia and COVID-19. The risk of lung cancer resulting from suggested dose in these studies was also evaluated. Conclusion: From the review of articles, we have found that low-dose radiation can lead to improvement in inflammation in different line cells and animals; in addition, it has been effective in treating inflammation and pneumonia caused by COVID-19 in human up to 80%. Since suggested doses do not remarkably increase the lung cancer risk, low-dose radiation can be an adjuvant treatment for COVID-19 patients.


2013 ◽  
Vol 85 (4) ◽  
pp. 959-964 ◽  
Author(s):  
Eugene Chung ◽  
James R. Corbett ◽  
Jean M. Moran ◽  
Kent A. Griffith ◽  
Robin B. Marsh ◽  
...  

2021 ◽  
Vol 66 (1) ◽  
pp. 59-62
Author(s):  
E Sarapultseva ◽  
A Garmash ◽  
E Gromushkina ◽  
E Gameeva ◽  
D Maksarova

Due to the long-term lack of effective pharmacological concepts, the situation with the spread of a new coronavirus infection in 2019 (COVID-19) has aroused interest in considering the possible use of radiation technologies, including historical reports on the treatment of patients with pneumonia using low-dose radiation therapy. A brief review of articles on clinical trials of radiation technologies in the fight against COVID-19 is conducted. The authors of most of the analyzed articles, as well as the authors of this review, conclude that the available scientific data do not justify clinical trials of low-dose radiation therapy for the treatment of COVID-19 pneumonia due to the unclear benefits and risks of mortality from radiation-induced diseases, including radiogenic cancer and diseases of the circulatory system.


Author(s):  
Srikanth Nayak ◽  
Arivudai Nambi ◽  
Sathish Kumar ◽  
P Hariprakash ◽  
Pradeep Yuvaraj ◽  
...  

AbstractNumerous studies have documented the adverse effects of high-dose radiation on hearing in patients. On the other hand, radiographers are exposed to a low dose of ionizing radiation, and the effect of a low dose of radiation on hearing is quite abstruse. Therefore, the present systematic review aimed to elucidate the effect of low-dose ionizing radiation on hearing. Two authors independently carried out a comprehensive data search in three electronic databases, including PUBMED/MEDLINE, CINAHL, and SCOPUS. Eligible articles were independently assessed for quality by two authors. Cochrane Risk of Bias tool was used assess quality of the included studies. Two articles met the low-dose radiation exposure criteria given by Atomic Energy Regulatory Board (AERB) and National Council on Radiation Protection (NCRP) guidelines. Both studies observed the behavioral symptoms, pure-tone hearing sensitivity at the standard, extended high frequencies, and the middle ear functioning in low-dose radiation-exposed individuals and compared with age and gender-matched controls. One study assessed the cochlear function using transient-evoked otoacoustic emissions (TEOAE). Both studies reported that behavioral symptoms of auditory dysfunction and hearing thresholds at extended high frequencies were higher in radiation-exposed individuals than in the controls. The current systematic review concludes that the low-dose ionizing radiation may affect the hearing adversely. Nevertheless, further studies with robust research design are required to explicate the cause and effect relationship between the occupational low-dose ionizing radiation exposure and hearing.


2001 ◽  
Vol 115 (11) ◽  
pp. 928-930 ◽  
Author(s):  
Gerald Fogarty ◽  
Hugh Turner ◽  
June Corry

A case of chronic, fluctuating plasma cell gingivostomatitis that progressed despite chemotherapy and surgery is reported. This is the first case reported of treatment with radiation therapy, and one of the few cases reported where the infiltrate has reached the larynx. After receiving low dose radiation therapy, via a conformal technique encompassing the respiratory mucosal lining from the base of tongue to carina, there has been symptomatic improvement.


Sign in / Sign up

Export Citation Format

Share Document