scholarly journals Is There a Dose-Response Relationship for Heart Disease With Low-Dose Radiation Therapy?

2013 ◽  
Vol 85 (4) ◽  
pp. 959-964 ◽  
Author(s):  
Eugene Chung ◽  
James R. Corbett ◽  
Jean M. Moran ◽  
Kent A. Griffith ◽  
Robin B. Marsh ◽  
...  
2003 ◽  
Vol 1 (1) ◽  
pp. 154014203908444 ◽  
Author(s):  
Shu-Zheng Liu

The health effects of low-dose radiation (LDR) have been the concern of the academic spheres, regulatory bodies, governments, and the public. Among these effects, the most important is carcinogenesis. In view of the importance of immune surveillance in cancer control, the dose-response relationship of the changes in different cell types of the immune system after whole-body irradiation is analyzed on the basis of systemic data from the author's laboratory in combination with recent reports in the literature. For T lymphocytes J- or inverted J-shaped curves are usually demonstrated after irradiation, while for macrophages dose-response curves of chiefly stimulation with irregular patterns are often observed. The intercellular reactions between the antigen presenting cell (APC) and T lymphocyte (TLC) in the immunologic synapse via expression of surface molecules and secretion of cytokines by the two cell types after different doses of radiation are illustrated. The different pathways of signal transduction thus facilitated in the T lymphocyte by different doses of radiation are analyzed to explain the mechanism of the phenomenon of low-dose stimulation and high-dose suppression of immunity. Experimental and clinical data are cited to show that LDR retards tumor growth, reduces metastasis, increases the efficacy of conventional radiotherapy and chemotherapy as well as alleviates the suppression of immunity due to tumor burden. The incidence of thymic lymphoma after high-dose radiation is lowered by preexposure to low-dose radiation, and its mechanism is supposed to be related to the stimulation of anticancer immunity induced by low-dose radiation. Recent reports on lowering of standardized cancer mortality rate and all cause death rate of cohorts occupationally exposed to low-dose radiation from the US, UK, and Canada are cited.


Author(s):  
Ghaznavi H ◽  

Using low-dose radiation therapy (LDRT) to treat inflammation, pneumonia, and coronavirus disease 2019 (COVID-19) has been investigated. Results have revealed that LDRT can improve inflammation in different line cells, animals, and humans. It was demonstrated that LDRT with a single dose (0.3-1 Gy) to the lungs could treat pneumonia resulting from COVID-19 by avoiding normal tissue toxicities. These suggested values of doses are obtained from the historical use of ionizing radiation for pneumonia [1]. A clinical study recently treated five patients with COVID-19 in the age range of 64-96 years; the lungs of these patients were exposed to 1.5 Gy of radiation in one fraction. Results showed that their respiratory conditions were quickly improved in four patients in the first 24 hours of exposure. The results of blood tests and imaging also confirmed the positive effect of LDRT on COVID-19 treatment [2]. Short course results of another study carried out on five patients with COVID-19 aged over 60 years, who underwent national COVID-19 therapy protocols, showed that using 0.5 Gy of radiation in one fraction led to the improvement of four patients in the first few days after exposure. Apart from that, they were discharged from the hospital with an average of 6 days, and no radiation toxicity was observed in them [3]. Another clinical investigation has used LDRT on nine patients to treat COVID-19. In this study, patients received 1 Gy to total lungs, and the SatO2/FiO2 index of these patients was evaluated. Results showed that this index significantly improved 72 hours and one week after LDRT, and inflammation of the lungs decreased one week after radiation therapy. Compared to patients who did not receive LDRT, the median days of hospitalization of patients who received LDRT was reduced by approximately one-fifth. Among these patients, seven were discharged, and two patients died [4]. The incidence of cancers such as lung, esophagus, and breast is one of the controversial subjects surrounding the use of LDRT in COVID-19 treatment. According to the Biological Effects of Ionization Radiation VII (BEIR VII) model, the risk of lung cancer was estimated for patients with COVID-19 whose lungs were irradiated to 0.5 Gy. The incidence of lung cancer can increase by 0.84% and 2.3% for males and females aged above 60 years, respectively. On the other hand, for young patients aged 25 years, the incidence of lung cancer was estimated at 1.1% and 3% for males and females, respectively [5]. According to this model, with an increase in the dose received by the lungs, the risk of lung cancer increases linearly; therefore, the incidence of lung cancer for patients whose whole lung receives a dose of 1.5 Gy will be three times for those who have received a dose of 0.5 Gy [6]. Based on these results, exposure of the lungs to the dose in the range 0.5-1.5 Gy can increase the risk of lung cancer up to 9% and 7% for female patients and 3.3% and 2.5% for male patients aged 25 and 65, respectively. Of course, it should be noted that smoking should be considered in estimating the risk of lung cancer in addition to the radiation factor. Besides the lungs, the heart and esophagus may also be exposed to radiation, increasing the risk of esophageal cancer and heart disease. Nevertheless, blood factors, smoking, and a history of heart disease can be influential in the incidence of heart disease in addition to radiation [7,8]. Results of these clinical trials have shown that the recommended dose (0.5-1.5 Gy) can increase lung cancer up to 9%. As one of the possible effects of ionizing radiation is carcinogenicity, no threshold has been defined for its occurrence, but another issue in radiobiology is the risk-benefit of ionizing radiation. As no radiation toxicities were reported in the said clinical studies, it seems that LDRT is safe; however, more clinical studies are needed to prove this claim. We should not hastily recommend the use of LDRT as an adjuvant treatment for COVID-19. To make a definite comment and evaluate the feasibility and efficacy of LDRT to treat COVID-19, we need more clinical studies with many patients.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Ning Liu ◽  
Yang Peng ◽  
Xinguang Zhong ◽  
Zheng Ma ◽  
Suiping He ◽  
...  

Abstract Background Numerous studies have concentrated on high-dose radiation exposed accidentally or through therapy, and few involve low-dose occupational exposure, to investigate the correlation between low-dose ionizing radiation and changing hematological parameters among medical workers. Methods Using a prospective cohort study design, we collected health examination reports and personal dose monitoring data from medical workers and used Poisson regression and restricted cubic spline models to assess the correlation between changing hematological parameters and cumulative radiation dose and determine the dose-response relationship. Results We observed that changing platelet of 1265 medical workers followed up was statistically different among the cumulative dose groups (P = 0.010). Although the linear trend tested was not statistically significant (Ptrend = 0.258), the non-linear trend tested was statistically significant (Pnon-linear = 0.007). Overall, there was a correlation between changing platelets and cumulative radiation dose (a change of βa 0.008 × 109/L during biennially after adjusting for gender, age at baseline, service at baseline, occupation, medical level, and smoking habits; 95% confidence interval [CI] = 0.003,0.014 × 109/L). Moreover, we also found positive first and then negative dose-response relationships between cumulative radiation dose and changing platelets by restricted cubic spline models, while there were negative patterns of the baseline service not less than 10 years (− 0.015 × 109/L, 95% CI = − 0.024, − 0.007 × 109/L) and radiation nurses(− 0.033 × 109/L, 95% CI = − 0.049, − 0.016 × 109/L). Conclusion We concluded that although the exposure dose was below the limit, medical workers exposed to low-dose ionizing radiation for a short period of time might have increased first and then decreased platelets, and there was a dose-response relationship between the cumulative radiation dose and platelets changing.


2002 ◽  
Vol 21 (2) ◽  
pp. 103-104 ◽  
Author(s):  
G Carelli ◽  
I Iavicoli

The authors comment on Calabrese and Baldwin's paper ‘Defining Hormesis’, which, to date, is the first attempt to provide a definition of hormesis that goes beyond the different interpretations of this phenomenon reported in the literature. While appreciating the effort made in this study to place hormesis in a general and at the same time specific context, the authors believe some clarifications are needed as regards the quantitative features of this phenomenon. In this connection, they speculate on whether Calabrese and Baldwin think it appropriate to include hormesis assessment criteria in the document, referring in particular to those reported in a previous paper. The authors share Calabrese and Baldwin's conclusion that future experimental models designed to study hormetic phenomena must necessarily include the time factor, which not only guarantees this phenomenon will be detected, but is also able to detect the specific type of hormesis.


2001 ◽  
Vol 115 (11) ◽  
pp. 928-930 ◽  
Author(s):  
Gerald Fogarty ◽  
Hugh Turner ◽  
June Corry

A case of chronic, fluctuating plasma cell gingivostomatitis that progressed despite chemotherapy and surgery is reported. This is the first case reported of treatment with radiation therapy, and one of the few cases reported where the infiltrate has reached the larynx. After receiving low dose radiation therapy, via a conformal technique encompassing the respiratory mucosal lining from the base of tongue to carina, there has been symptomatic improvement.


Sign in / Sign up

Export Citation Format

Share Document