scholarly journals Tuning the magnetic properties of NiPS3 through organic-ion intercalation

Author(s):  
Daniel Tezze ◽  
José M. Pereira ◽  
Yaiza Asensio ◽  
Mihail Ipatov ◽  
Francesco Calavalle ◽  
...  

Atomically thin van der Waals magnetic crystals are characterized by tunable magnetic properties related to their low dimensionality. While electrostatic gating has been used to tailor their magnetic response, chemical approaches like intercalation remain largely unexplored. Here, we demonstrate the manipulation of the magnetism in the van der Waals antiferromagnet NiPS3 through the intercalation of different organic cations, inserted using an engineered two-step process. First, the electrochemical intercalation of tetrabutylammonium cations (TBA+) results in a ferrimagnetic hybrid compound displaying a transition temperature of 78 K, and characterized by a hysteretic behavior with finite remanence and coercivity. Then, TBA+ cations are replaced by cobaltocenium via an ion-exchange process, yielding a ferrimagnetic phase with higher transition temperature (98 K) and higher remanent magnetization. Importantly, we demonstrate that the intercalation and cation exchange processes can be carried out in bulk crystals and few-layer flakes, opening the way to the integration of intercalated magnetic materials in devices.

Nanoscale ◽  
2022 ◽  
Author(s):  
Daniel Tezze ◽  
José Manuel Pereira ◽  
Yaiza Asensio ◽  
Mihail Ipatov ◽  
Francesco Calavalle ◽  
...  

Atomically thin van der Waals magnetic crystals are characterized by tunable magnetic properties related to their low dimensionality. While electrostatic gating has been used to tailor their magnetic response, chemical...


2006 ◽  
Vol 972 ◽  
Author(s):  
Natasha A. Chernova ◽  
Miaomiao Ma ◽  
Jie Xiao ◽  
M. Stanley Whittingham ◽  
Jordi Cabana Jiménez ◽  
...  

AbstractThe magnetic properties of layered LiNi0.5Mn0.5O2 and NaNi0.5Mn0.5O2 cathode materials are studied using AC susceptibility and DC magnetization techniques in order to elucidate magnetic interactions within transition metal (TM) layers and between them in samples with various TM distributions. In NaNi0.5Mn0.5O2 antiferromagnetic (AF) ordering transition is found at 60 K and a spin-flop transition at high magnetic field. In LiNi0.5Mn0.5O2 obtained by ion exchange from NaNi0.5Mn0.5O2 ferrimagnetic ordering is found at around 100 K. The saturation magnetization and the hysteresis loop size of ion-exchanged compounds vary from sample to sample, which implies that the Ni2+ ions migrate upon ion exchange process. Magnetic properties of high-temperature and ion-exchanged LiNi0.5Mn0.5O2 are compared; magnetic ordering models for all compounds are proposed based on experimental results and Goodenough-Kanamori rules.


2020 ◽  
Vol 16 ◽  
Author(s):  
Reda M. El-Shishtawy ◽  
Abdullah M. Asiri ◽  
Nahed S. E. Ahmed

Background: Color effluents generated from the production industry of dyes and pigments and their use in different applications such as textile, paper, leather tanning, and food industries, are high in color and contaminants that damage the aquatic life. It is estimated that about 105 of various commercial dyes and pigments amounted to 7×105 tons are produced annually worldwide. Ultimately, about 10–15% is wasted into the effluents of the textile industry. Chitin is abundant in nature, and it is a linear biopolymer containing acetamido and hydroxyl groups amenable to render it atmospheric by introducing amino and carboxyl groups, hence able to remove different classes of toxic organic dyes from colored effluents. Methods: Chitin was chemically modified to render it amphoteric via the introduction of carboxyl and amino groups. The amphoteric chitin has been fully characterized by FTIR, TGA-DTG, elemental analysis, SEM, and point of zero charge. Adsorption optimization for both anionic and cationic dyes was made by batch adsorption method, and the conditions obtained were used for studying the kinetics and thermodynamics of adsorption. Results: The results of dye removal proved that the adsorbent was proven effective in removing both anionic and cationic dyes (Acid Red 1 and methylene blue (MB)), at their respective optimum pHs (2 for acid and 8 for cationic dye). The equilibrium isotherm at room temperature fitted the Freundlich model for MB, and the maximum adsorption capacity was 98.2 mg/g using 50 mg/l of MB, whereas the equilibrium isotherm fitted the Freundlich and Langmuir model for AR1 and the maximum adsorption capacity was 128.2 mg/g. Kinetic results indicate that the adsorption is a two-step diffusion process for both dyes as indicated by the values of the initial adsorption factor (Ri) and follows the pseudo-second-order kinetics. Also, thermodynamic calculations suggest that the adsorption of AR1 on the amphoteric chitin is an endothermic process from 294 to 303 K. The result indicated that the mechanism of adsorption is chemisorption via an ion-exchange process. Also, recycling of the adsorbent was easy, and its reuse for dye removal was effective. Conclusion: New amphoteric chitin has been successfully synthesized and characterized. This resin material, which contains amino and carboxyl groups, is novel as such chemical modification of chitin hasn’t been reported. The amphoteric chitin has proven effective in decolorizing aqueous solution from anionic and cationic dyes. The adsorption behavior of amphoteric chitin is believed to follow chemical adsorption with an ion-exchange process. The recycling process for few cycles indicated that the loaded adsorbent could be regenerated by simple treatment and retested for removing anionic and cationic dyes without any loss in the adsorbability. Therefore, the study introduces a new and easy approach for the development of amphoteric adsorbent for application in the removal of different dyes from aqueous solutions.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 102
Author(s):  
Ferenc Horkay

The objective of this article is to introduce the readers to the field of polyelectrolyte gels. These materials are common in living systems and have great importance in many biomedical and industrial applications. In the first part of this paper, we briefly review some characteristic properties of polymer gels with an emphasis on the unique features of this type of soft material. Unsolved problems and possible future research directions are highlighted. In the second part, we focus on the typical behavior of polyelectrolyte gels. Many biological materials (e.g., tissues) are charged (mainly anionic) polyelectrolyte gels. Examples are shown to illustrate the effect of counter-ions on the osmotic swelling behavior and the kinetics of the swelling of model polyelectrolyte gels. These systems exhibit a volume transition as the concentration of higher valence counter-ions is gradually increased in the equilibrium bath. A hierarchy is established in the interaction strength between the cations and charged polymer molecules according to the chemical group to which the ions belong. The swelling kinetics of sodium polyacrylate hydrogels is investigated in NaCl solutions and in solutions containing both NaCl and CaCl2. In the presence of higher valence counter-ions, the swelling/shrinking behavior of these gels is governed by the diffusion of free ions in the swollen network, the ion exchange process and the coexistence of swollen and collapsed states.


Author(s):  
Prayoonsak Pluengphon ◽  
Prutthipong Tsuppayakorn-aek ◽  
Burapat Inceesungvorn ◽  
Udomsilp Pinsook ◽  
Thiti Bovornratanaraks

2021 ◽  
Vol 23 (10) ◽  
pp. 6171-6181
Author(s):  
Yaoqi Gao ◽  
Baozeng Zhou ◽  
Xiaocha Wang

It is found that the biaxial strain, electric field and interlayer distance can effectively modulate the electronic structure and magnetic properties of two-dimensional van der Waals heterostructures.


2020 ◽  
Vol 116 (20) ◽  
pp. 202402
Author(s):  
Congkuan Tian ◽  
Feihao Pan ◽  
Sheng Xu ◽  
Kun Ai ◽  
Tianlong Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document