scholarly journals In Silico Modeling and Scoring of PROTAC-Mediated Ternary Complex Poses

Author(s):  
Junzhuo Liao ◽  
Xueqing Nie ◽  
Ilona Unarta ◽  
Spencer Ericksen ◽  
Weiping Tang

Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that induce ubiquitination and subsequent degradation of proteins via formation of ternary complexes between an E3 ubiquitin ligase and a target protein. Rational design of PROTACs requires accurate knowledge of the native configuration of the PROTAC induced ternary complex. This study demonstrates that native and non-native ternary complex poses can be distinguished based on pose occupancy time in MD, where native poses exhibit longer occupancy times than non-native ones at both room and higher temperatures. Candidate poses are generated by MD sampling and pre-ranked by the classic MM/GBSA method. A specific heating scheme is then applied to induce ternary pose departure, generating an occupancy score and temperature score reflecting pose occupancy time and fraction. The scoring approach enables identification of the native pose in all the test systems. Beyond providing a relative rank of hypothetical poses of a given ternary system, the method could also provide empirical guidance to whether a given ternary pose is likely a native one or not. The success of the method is in part attributed to the dynamic nature of the pose departure analysis which accounts for solute entropic effects, typically neglected in the faster static pose scoring methods, while solute entropic contributions play a greater role in protein-protein interactions than in protein-ligand systems.

2020 ◽  
Vol 85 (16) ◽  
pp. 10552-10560
Author(s):  
Peng Sang ◽  
Yan Shi ◽  
Pirada Higbee ◽  
Minghui Wang ◽  
Sami Abdulkadir ◽  
...  

Genetics ◽  
1988 ◽  
Vol 119 (3) ◽  
pp. 477-484
Author(s):  
W F Wu ◽  
S Christiansen ◽  
M Feiss

Abstract The large subunit of phage lambda terminase, gpA, the gene product of the phage A gene, interacts with the small subunit, gpNul, to form functional terminase. Terminase binds to lambda DNA at cosB to form a binary complex. The terminase:DNA complex binds a prohead to form a ternary complex. Ternary complex formation involves an interaction of the prohead with gpA. The amino terminus of gpA contains a functional domain for interaction with gpNul, and the carboxy-terminal 38 amino acids of gpA contain a functional domain for prohead binding. This information about the structure of gpA was obtained through the use of hybrid phages resulting from recombination between lambda and the related phage 21. lambda and 21 encode terminases that are analogous in structural organization and have ca. 60% sequence identity. In spite of these similarities, lambda and 21 terminases differ in specificity for DNA binding, subunit assembly, and prohead binding. A lambda-21 hybrid phage produces a terminase in which one of the subunits is chimeric and had recombinant specificities. In the work reported here; a new hybrid, lambda-21 hybrid 67, is characterized. lambda-21 hybrid 67 is the result of a crossover between lambda and 21 in the large subunit genes, such that the DNA from the left chromosome end is from 21, including cosB phi 21, the 1 gene, and the first 48 codons for the 2 gene. The rest of the hybrid 67 chromosome is lambda DNA, including 593 codons of the A gene. The chimeric gp2/A of hybrid 67 binds gp1 to form functional terminase.(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Author(s):  
Ramesh K. Jha ◽  
Allison Yankey ◽  
Kalifa Shabazz ◽  
Leslie Naranjo ◽  
Nileena Velappan ◽  
...  

ABSTRACTWhile natural protein-protein interactions have evolved to be induced by complex stimuli, rational design of interactions that can be switched-on-demand still remain challenging in the protein design world. Here, we demonstrate a computationally redesigned natural interface for improved binding affinity could further be mutated to adopt a pH switchable interaction. The redesigned interface of Protein G-IgG Fc domain, when incorporated with histidine and glutamic acid on Protein G (PrG-EHHE), showed a switch in binding affinity by 50-fold when pH was altered from mild acidic to mild basic. The wild type (WT) interface only showed negligible switch. The overall binding affinity at mild acidic pH for PrG-EHHE outperformed the WT PrG interaction. The new reagent PrG-EHHE will be revolutionary in IgG purification since the traditional method of using an extreme acidic pH for elution can be circumvented.Abstract Figure


Author(s):  
Natalia Sanchez de Groot ◽  
Marc Torrent Burgas

ABSTRACTBacteria use protein-protein interactions to infect their hosts and hijack fundamental pathways, which ensures their survival and proliferation. Hence, the infectious capacity of the pathogen is closely related to its ability to interact with host proteins. Here, we show that hubs in the host-pathogen interactome are isolated in the pathogen network by adapting the geometry of the interacting interfaces. An imperfect mimicry of the eukaryotic interfaces allows pathogen proteins to actively bind to the host’s target while preventing deleterious effects on the pathogen interactome. Understanding how bacteria recognize eukaryotic proteins may pave the way for the rational design of new antibiotic molecules.


2015 ◽  
Vol 137 (38) ◽  
pp. 12249-12260 ◽  
Author(s):  
Logan R. Hoggard ◽  
Yongqiang Zhang ◽  
Min Zhang ◽  
Vanja Panic ◽  
John A. Wisniewski ◽  
...  

Author(s):  
Sailu Sarvagalla ◽  
Mohane Selvaraj Coumar

Most of the developed kinase inhibitor drugs are ATP competitive and suffer from drawbacks such as off-target kinase activity, development of resistance due to mutation in the ATP binding pocket and unfavorable intellectual property situations. Besides the ATP binding pocket, protein kinases have binding sites that are involved in Protein-Protein Interactions (PPIs); these PPIs directly or indirectly regulate the protein kinase activity. Of recent, small molecule inhibitors of PPIs are emerging as an alternative to ATP competitive agents. Rational design of inhibitors for kinase PPIs could be carried out using molecular modeling techniques. In silico tools available for the prediction of hot spot residues and cavities at the PPI sites and the means to utilize this information for the identification of inhibitors are discussed. Moreover, in silico studies to target the Aurora B-INCENP PPI sites are discussed in context. Overall, this chapter provides detailed in silico strategies that are available to the researchers for carrying out structure-based drug design of PPI inhibitors.


2019 ◽  
Vol 70 (13) ◽  
pp. 3401-3414 ◽  
Author(s):  
Clara Williams ◽  
Patricia Fernández-Calvo ◽  
Maite Colinas ◽  
Laurens Pauwels ◽  
Alain Goossens

Abstract Phytohormones regulate the plasticity of plant growth and development, and responses to biotic and abiotic stresses. Many hormone signal transduction cascades involve ubiquitination and subsequent degradation of proteins by the 26S proteasome. The conjugation of ubiquitin to a substrate is facilitated by the E1 activating, E2 conjugating, and the substrate-specifying E3 ligating enzymes. The most prevalent type of E3 ligase in plants is the Cullin–RING ligase (CRL)-type, with F-box proteins (FBPs) as the substrate recognition component. The activity of these SKP–Cullin–F-box (SCF) complexes needs to be tightly regulated in time and place. Here, we review the regulation of SCF function in plants on multiple levels, with a focus on the auxin and jasmonate SCF-type receptor complexes. We discuss in particular the relevance of protein–protein interactions and post-translational modifications as mechanisms to keep SCF functioning under control. Additionally, we highlight the unique property of SCFTIR1/AFB and SCFCOI1 to recognize substrates by forming co-receptor complexes. Finally, we explore how engineered selective agonists can be used to study and uncouple the outcomes of the complex auxin and jasmonate signaling networks that are governed by these FBPs.


2006 ◽  
Vol 3 (7) ◽  
pp. 215-233 ◽  
Author(s):  
Steven Fletcher ◽  
Andrew D Hamilton

Protein–protein interactions play key roles in a range of biological processes, and are therefore important targets for the design of novel therapeutics. Unlike in the design of enzyme active site inhibitors, the disruption of protein–protein interactions is far more challenging, due to such factors as the large interfacial areas involved and the relatively flat and featureless topologies of these surfaces. Nevertheless, in spite of such challenges, there has been considerable progress in recent years. In this review, we discuss this progress in the context of mimicry of protein surfaces: targeting protein–protein interactions by rational design.


2020 ◽  
Vol 63 (21) ◽  
pp. 13187-13196
Author(s):  
Yan Shi ◽  
Peng Sang ◽  
Junhao Lu ◽  
Pirada Higbee ◽  
Lihong Chen ◽  
...  

2013 ◽  
Vol 394 (2) ◽  
pp. 203-216 ◽  
Author(s):  
Sabine Zachgo ◽  
Guy T. Hanke ◽  
Renate Scheibe

Abstract This review describes how transient protein-protein interactions can contribute to direct information flow between subsequent steps of metabolic and signaling pathways, focusing on the redox perspective. Posttranslational modifications are often the basis for the dynamic nature of such macromolecular aggregates, named microcompartments. The high cellular protein concentration promotes these interactions that are prone to disappear upon the extraction of proteins from cells. Changes of signaling molecules, such as metabolites, effectors or phytohormones, or the redox state in the cellular microenvironment, can modulate them. The signaling network can, therefore, respond in a very flexible and appropriate manner, such that metabolism, stress responses, and developmental steps are integrated by multiple and changing contacts between functional modules. This allows plants to survive and persist by continuously and flexibly adapting to a challenging or even adverse environment.


Sign in / Sign up

Export Citation Format

Share Document