scholarly journals All-inorganic quantum dot assisted enhanced charge extraction across the interfaces of bulk organo-halide perovskites for efficient and stable pin-hole free perovskite solar cells

2019 ◽  
Vol 10 (41) ◽  
pp. 9530-9541 ◽  
Author(s):  
Dibyendu Ghosh ◽  
Dhirendra K. Chaudhary ◽  
Md. Yusuf Ali ◽  
Kamlesh Kumar Chauhan ◽  
Sayan Prodhan ◽  
...  

Grain boundaries in bulk perovskite films are considered as giant trapping sites for photo-generated carriers. Surface engineering via inorganic perovskite quantum dots has been employed for creating monolithically grained, pin-hole free perovskite films.

Nanoscale ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Qiang Guo ◽  
Fanglong Yuan ◽  
Bing Zhang ◽  
Shijie Zhou ◽  
Jin Zhang ◽  
...  

Passivation of the grain boundaries of CH3NH3PbI3 by bonding with a carbon quantum dot additive for efficient perovskite solar cells with excellent environmental stability.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Long Hu ◽  
Qian Zhao ◽  
Shujuan Huang ◽  
Jianghui Zheng ◽  
Xinwei Guan ◽  
...  

AbstractAll-inorganic CsPbI3 perovskite quantum dots have received substantial research interest for photovoltaic applications because of higher efficiency compared to solar cells using other quantum dots materials and the various exciting properties that perovskites have to offer. These quantum dot devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies. We demonstrate higher mechanical endurance of quantum dot films compared to bulk thin film and highlight the importance of further research on high-performance and flexible optoelectronic devices using nanoscale grains as an advantage. Specifically, we develop a hybrid interfacial architecture consisting of CsPbI3 quantum dot/PCBM heterojunction, enabling an energy cascade for efficient charge transfer and mechanical adhesion. The champion CsPbI3 quantum dot solar cell has an efficiency of 15.1% (stabilized power output of 14.61%), which is among the highest report to date. Building on this strategy, we further demonstrate a highest efficiency of 12.3% in flexible quantum dot photovoltaics.


2018 ◽  
Vol 6 (19) ◽  
pp. 8886-8894 ◽  
Author(s):  
Nianqing Fu ◽  
Chun Huang ◽  
Peng Lin ◽  
Mingshan Zhu ◽  
Tao Li ◽  
...  

Dual-functional black phosphorus quantum dot electron selective layer was designed for plastic perovskite solar cells. The efficient electron extraction and improved perovskite film quality contributed to the reasonably high efficiency.


Nanoscale ◽  
2021 ◽  
Author(s):  
Shao-Huan Hong ◽  
Shakil N. Afraj ◽  
Ping-Yu Huang ◽  
Yi-Zi Yeh ◽  
Shih-Huang Tung ◽  
...  

Low-dimensional all-inorganic perovskite quantum dots (QDs) have been increasingly developed as photo-sensing materials in the field of photodetectors because of their strong light-absorption capability and broad bandgap tunability. Here, solution-processed...


2019 ◽  
Author(s):  
Sofia Masi ◽  
Carlos Echeverría-Arrondo ◽  
Salim K.P. Muhammed ◽  
Thi Tuyen Ngo ◽  
Perla F. Méndez ◽  
...  

<b>The extraordinary low non-radiative recombination and band gap versatility of halide perovskites have led to considerable development in optoelectronic devices. However, this versatility is limited by the stability of the perovskite phase, related to the relative size of the different cations and anions. The most emblematic case is that of formamidinium lead iodine (FAPI) black phase, which has the lowest band gap among all 3D lead halide perovskites, but quickly transforms into the non-perovskite yellow phase at room temperature. Efforts to optimize perovskite solar cells have largely focused on the stabilization of FAPI based perovskite structures, often introducing alternative anions and cations. However, these approaches commonly result in a blue-shift of the band gap, which limits the maximum photo-conversion efficiency. Here, we report the use of PbS colloidal quantum dots (QDs) as stabilizing agent for the FAPI perovskite black phase. The surface chemistry of PbS plays a pivotal role, by developing strong bonds with the black phase but weak ones with the yellow phase. As a result, stable FAPI black phase can be formed at temperatures as low as 85°C in just 10 minutes, setting a record of concomitantly fast and low temperature formation for FAPI, with important consequences for industrialization. FAPI thin films obtained through this procedure preserve the original low band gap of 1.5 eV, reach a record open circuit potential (V<sub>oc</sub>) of 1.105 V -91% of the maximum theoretical V<sub>oc</sub>- and preserve high efficiency for more than 700 hours. These findings reveal the potential of strategies exploiting the chemi-structural properties of external additives to relax the tolerance factor and optimize the optoelectronic performance of perovskite materials.</b>


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 121 ◽  
Author(s):  
Lung-Chien Chen ◽  
Ching-Ho Tien ◽  
Zong-Liang Tseng ◽  
Jun-Hao Ruan

We describe a method to enhance power conversion efficiency (PCE) of MAPbI3 perovskite solar cell by inserting a FAPbX3 perovskite quantum dots (QD-FAPbX3) layer. The MAPbI3 and QD-FAPbX3 layers were prepared using a simple, rapid spin-coating method in a nitrogen-filled glove box. The solar cell structure consists of ITO/PEDOT:PSS/MAPbI3/QD-FAPbX3/C60/Ag, where PEDOT:PSS, MAPbI3, QD-FAPbX3, and C60 were used as the hole transport layer, light-absorbing layer, absorption enhance layer, and electron transport layer, respectively. The MAPbI3/QD-FAPbX3 solar cells exhibit a PCE of 7.59%, an open circuit voltage (Voc) of 0.9 V, a short-circuit current density (Jsc) of 17.4 mA/cm2, and a fill factor (FF) of 48.6%, respectively.


Sign in / Sign up

Export Citation Format

Share Document