scholarly journals Hilbert-Curve Assisted Structure Embedding Method

Author(s):  
Gergely Zahoranszky-Kohalmi ◽  
Kanny K. Wan ◽  
Alexander G. Godfrey

This work introduces a novel chemical space embedding method "Hilbert-Curve Assisted Structure Embedding (HCASE)" with help of pseudo-Hilbert Curves and Scaffold- Keys. The method was designed to produce an embedding that can be intuitively interpreted by medicinal chemists and data analysts. We analyzed the embedding of approved drug molecules (DrugBank) and natural products (CANVASS) into chemical spaces defined by Bemis-Murcko scaffolds extracted from ChEMBL (v24.1) database and from ChEMBL (v23) Natural Products. The implementation of HCASE algorithm and the input and results files of the analyses are available at https://github.com/ncats/hcase .

2020 ◽  
Author(s):  
Gergely Zahoranszky-Kohalmi ◽  
Kanny K. Wan ◽  
Alexander G. Godfrey

This work introduces a novel chemical space embedding method "Hilbert-Curve Assisted Structure Embedding (HCASE)" with help of pseudo-Hilbert Curves and Scaffold- Keys. The method was designed to produce an embedding that can be intuitively interpreted by medicinal chemists and data analysts. We analyzed the embedding of approved drug molecules (DrugBank) and natural products (CANVASS) into chemical spaces defined by Bemis-Murcko scaffolds extracted from ChEMBL (v24.1) database and from ChEMBL (v23) Natural Products. The implementation of HCASE algorithm and the input and results files of the analyses are available at https://github.com/ncats/hcase .


2020 ◽  
Vol 5 (10) ◽  
Author(s):  
Conrad V. Simoben ◽  
Fidele Ntie-Kang ◽  
Dina Robaa ◽  
Wolfgang Sippl

AbstractThe development and application of computer-aided drug design/discovery (CADD) techniques (such as structured-base virtual screening, ligand-based virtual screening and neural networks approaches) are on the point of disintermediation in the pharmaceutical drug discovery processes. The application of these CADD methods are standing out positively as compared to other experimental approaches in the identification of hits. In order to venture into new chemical spaces, research groups are exploring natural products (NPs) for the search and identification of new hits and more efficient leads as well as the repurposing of approved NPs. The chemical space of NPs is continuously increasing as a result of millions of years of evolution of species and these data are mainly stored in the form of databases providing access to scientists around the world to conduct studies using them. Investigation of these NP databases with the help of CADD methodologies in combination with experimental validation techniques is essential to identify and propose new drug molecules. In this chapter, we highlight the importance of the chemical diversity of NPs as a source for potential drugs as well as some of the success stories of NP-derived candidates against important therapeutic targets. The focus is on studies that applied a healthy dose of the emerging CADD methodologies (structure-based, ligand-based and machine learning).


Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 107
Author(s):  
Rafael de Felício ◽  
Patricia Ballone ◽  
Cristina Freitas Bazzano ◽  
Luiz F. G. Alves ◽  
Renata Sigrist ◽  
...  

Bacterial genome sequencing has revealed a vast number of novel biosynthetic gene clusters (BGC) with potential to produce bioactive natural products. However, the biosynthesis of secondary metabolites by bacteria is often silenced under laboratory conditions, limiting the controlled expression of natural products. Here we describe an integrated methodology for the construction and screening of an elicited and pre-fractionated library of marine bacteria. In this pilot study, chemical elicitors were evaluated to mimic the natural environment and to induce the expression of cryptic BGCs in deep-sea bacteria. By integrating high-resolution untargeted metabolomics with cheminformatics analyses, it was possible to visualize, mine, identify and map the chemical and biological space of the elicited bacterial metabolites. The results show that elicited bacterial metabolites correspond to ~45% of the compounds produced under laboratory conditions. In addition, the elicited chemical space is novel (~70% of the elicited compounds) or concentrated in the chemical space of drugs. Fractionation of the crude extracts further evidenced minor compounds (~90% of the collection) and the detection of biological activity. This pilot work pinpoints strategies for constructing and evaluating chemically diverse bacterial natural product libraries towards the identification of novel bacterial metabolites in natural product-based drug discovery pipelines.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2596-2607
Author(s):  
R. P. Vivek-Ananth ◽  
Ajaya Kumar Sahoo ◽  
Kavyaa Kumaravel ◽  
Karthikeyan Mohanraj ◽  
Areejit Samal

First dedicated manually curated resource on secondary metabolites and therapeutic uses of medicinal fungi. Cheminformatics based analysis of the chemical space of fungal natural products.


Synthesis ◽  
2021 ◽  
Author(s):  
Michael P. Badart ◽  
Bill C. Hawkins

AbstractThe spirocyclic motif is abundant in natural products and provides an ideal three-dimensional template to interact with biological targets. With significant attention historically expended on the synthesis of flat-heterocyclic compound libraries, methods to access the less-explored three-dimensional medicinal-chemical space will continue to increase in demand. Herein, we highlight by reaction class the common strategies used to construct the spirocyclic centres embedded in a series of well-studied natural products.1 Introduction2 Cycloadditions3 Palladium-Catalysed Coupling Reactions4 Conjugate Additions5 Imines, Aminals, and Hemiaminal Ethers6 Mannich-Type Reactions7 Oxidative Dearomatisation8 Alkylation9 Organometallic Additions10 Conclusions


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Grigalunas ◽  
Annina Burhop ◽  
Sarah Zinken ◽  
Axel Pahl ◽  
José-Manuel Gally ◽  
...  

AbstractNatural product structure and fragment-based compound development inspire pseudo-natural product design through different combinations of a given natural product fragment set to compound classes expected to be chemically and biologically diverse. We describe the synthetic combination of the fragment-sized natural products quinine, quinidine, sinomenine, and griseofulvin with chromanone or indole-containing fragments to provide a 244-member pseudo-natural product collection. Cheminformatic analyses reveal that the resulting eight pseudo-natural product classes are chemically diverse and share both drug- and natural product-like properties. Unbiased biological evaluation by cell painting demonstrates that bioactivity of pseudo-natural products, guiding natural products, and fragments differ and that combination of different fragments dominates establishment of unique bioactivity. Identification of phenotypic fragment dominance enables design of compound classes with correctly predicted bioactivity. The results demonstrate that fusion of natural product fragments in different combinations and arrangements can provide chemically and biologically diverse pseudo-natural product classes for wider exploration of biologically relevant chemical space.


2021 ◽  
Vol 25 ◽  
Author(s):  
Pedro Alves Bezerra Morais ◽  
Carla Santana Francisco ◽  
Heberth de Paula ◽  
Rayssa Ribeiro ◽  
Mariana Alves Eloy ◽  
...  

: Historically, the medicinal chemistry is concerned with the approach of organic chemistry to new drug synthesis. Considering the fruitful collections of new molecular entities, the dedicated efforts for medicinal chemistry are rewarding. Planning and search of new and applicable pharmacologic therapies involve the altruistic nature of the scientists. Since the 19th century, notoriously the application of isolated and characterized plant-derived compounds in modern drug discovery and in various stages of clinical development highlight its viability and significance. Natural products influence a broad range of biological processes, covering transcription, translation, and post-translational modification and being effective modulators of almost all basic cellular processes. The research of new chemical entities through “click chemistry” continuously opens up a map for the remarkable exploration of chemical space in towards leading natural products optimization by structure-activity relationship. Finally, here in this review, we expect to gather a broad knowledge involving triazolic natural products derivatives, synthetic routes, structures, and their biological activities.


Author(s):  
Mengyu Qiu ◽  
Xuegang Fu ◽  
Peng Fu ◽  
Jianhui Huang

N-heterocycles can be found in natural products and drug molecules, which are indispensable components in the area of organic synthesis, medicinal chemistry and material science. The construction of these N-containing...


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 993 ◽  
Author(s):  
J. Jesús Naveja ◽  
Mariel P. Rico-Hidalgo ◽  
José L. Medina-Franco

Background: Food chemicals are a cornerstone in the food industry. However, its chemical diversity has been explored on a limited basis, for instance, previous analysis of food-related databases were done up to 2,200 molecules. The goal of this work was to quantify the chemical diversity of chemical compounds stored in FooDB, a database with nearly 24,000 food chemicals. Methods: The visual representation of the chemical space of FooDB was done with ChemMaps, a novel approach based on the concept of chemical satellites. The large food chemical database was profiled based on physicochemical properties, molecular complexity and scaffold content. The global diversity of FooDB was characterized using Consensus Diversity Plots. Results: It was found that compounds in FooDB are very diverse in terms of properties and structure, with a large structural complexity. It was also found that one third of the food chemicals are acyclic molecules and ring-containing molecules are mostly monocyclic, with several scaffolds common to natural products in other databases. Conclusions: To the best of our knowledge, this is the first analysis of the chemical diversity and complexity of FooDB. This study represents a step further to the emerging field of “Food Informatics”. Future study should compare directly the chemical structures of the molecules in FooDB with other compound databases, for instance, drug-like databases and natural products collections. An additional future direction of this work is to use the list of 3,228 polyphenolic compounds identified in this work to enhance the on-going polyphenol-protein interactome studies.


2020 ◽  
Author(s):  
Xiao-Xu Wang ◽  
Xi Lu ◽  
Shi-Jiang He ◽  
Yao Fu

We report a three-component olefin reductive dicarbofunctionalization for constructing densely functionalized alkylborates, specifically, nickel-catalyzed reductive dialkylation and alkylarylation of vinyl boronates with a variety of alkyl bromides and aryl iodides. This reaction exhibits good coupling efficiency and excellent functional group compatibility, providing convenient access to the late-stage modification of complex natural products and drug molecules. Combined with versatile alkylborate transformations, this reaction could also find applications in the modular and convergent synthesis of complex, densely functionalized compounds.


Sign in / Sign up

Export Citation Format

Share Document