scholarly journals NIR-Responsive Carbon Nitride of Five-Membered Rings (C3N2) for Photoelectrochemical Biosensing

Author(s):  
Hong Yang ◽  
Qing Zhou ◽  
Zhengzou Fang ◽  
Lufang Zhao ◽  
Jin Ma ◽  
...  

Polymeric carbon nitrides (pCN) have garnered immense attention, ranging from super-hard materials to artificial photosynthesis, due to their exceptional chemical and optoelectronic properties. The most studied C<sub>3</sub>N<sub>4</sub> along with other stoichiometric pCN, such as C<sub>3</sub>N, C<sub>2</sub>N and C<sub>3</sub>N<sub>5</sub>, commonly employed a six-membered ring as the basic units; while the five-membered rings are also popular in a myriad of natural and artificial molecules with a more polarized framework and intriguing functionalities. Here, we report a facile synthesis of C<sub>3</sub>N<sub>2</sub> with a topological structure of five-membered rings, endowing by far the narrowest the first electronic transition energy (0.81 eV) in pCN family. The basic imidazole unit with dangling bonds, resulting in an unusual electronic band of p-π conjugation and split molecular orbitals, was revealed in C<sub>3</sub>N<sub>2</sub> by both experiments and density functional theory calculations. Moreover, a NIR-responsive photoelectrochemical (PEC) biosensor for non-transparent biosamples was constructed for the first time using C<sub>3</sub>N<sub>2</sub> with outstanding performance. This work would not only open a new vista of pCN with different topological structures but also broaden the horizon of their application, such as prospective <i>in vivo</i> PEC bioassay.

2020 ◽  
Author(s):  
Hong Yang ◽  
Qing Zhou ◽  
Zhengzou Fang ◽  
Lufang Zhao ◽  
Jin Ma ◽  
...  

Polymeric carbon nitrides (pCN) have garnered immense attention, ranging from super-hard materials to artificial photosynthesis, due to their exceptional chemical and optoelectronic properties. The most studied C<sub>3</sub>N<sub>4</sub> along with other stoichiometric pCN, such as C<sub>3</sub>N, C<sub>2</sub>N and C<sub>3</sub>N<sub>5</sub>, commonly employed a six-membered ring as the basic units; while the five-membered rings are also popular in a myriad of natural and artificial molecules with a more polarized framework and intriguing functionalities. Here, we report a facile synthesis of C<sub>3</sub>N<sub>2</sub> with a topological structure of five-membered rings, endowing by far the narrowest the first electronic transition energy (0.81 eV) in pCN family. The basic imidazole unit with dangling bonds, resulting in an unusual electronic band of p-π conjugation and split molecular orbitals, was revealed in C<sub>3</sub>N<sub>2</sub> by both experiments and density functional theory calculations. Moreover, a NIR-responsive photoelectrochemical (PEC) biosensor for non-transparent biosamples was constructed for the first time using C<sub>3</sub>N<sub>2</sub> with outstanding performance. This work would not only open a new vista of pCN with different topological structures but also broaden the horizon of their application, such as prospective <i>in vivo</i> PEC bioassay.


2019 ◽  
Vol 21 (46) ◽  
pp. 25743-25748
Author(s):  
Yong-Chao Rao ◽  
Xiang-Mei Duan

The catalytic performance of Pd/Pt embedded planar carbon nitride for CO oxidation has been investigated via spin-polarized density functional theory calculations.


2019 ◽  
Vol 7 (39) ◽  
pp. 12306-12311 ◽  
Author(s):  
He-Ping Su ◽  
Shu-Fang Li ◽  
Yifeng Han ◽  
Mei-Xia Wu ◽  
Churen Gui ◽  
...  

First-principles density functional theory calculations, for the first time, was used to predict the Mg3TeO6-to-perovskite type phase transition in Mn3TeO6 at around 5 GPa.


RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 42-52
Author(s):  
M. Munawar ◽  
M. Idrees ◽  
Iftikhar Ahmad ◽  
H. U. Din ◽  
B. Amin

Using density functional theory calculations, we have investigated the electronic band structure, optical and photocatalytic response of BSe, M2CO2 (M = Ti, Zr, Hf) monolayers and their corresponding BSe–M2CO2 (M = Ti, Zr, Hf) van der Waals heterostructures.


2019 ◽  
Vol 33 (07) ◽  
pp. 1950045
Author(s):  
R. Mahdjoubi ◽  
Y. Megdoud ◽  
L. Tairi ◽  
H. Meradji ◽  
Z. Chouahda ◽  
...  

First-principles calculations of the structural, electronic, optical and thermal properties of chalcopyrite CuXTe2 (X[Formula: see text]=[Formula: see text]Al, Ga, In) have been performed within density functional theory using the full-potential linearized augmented plane wave (FP-LAPW) method, by employing for the exchange and correlation potential the approximations WC-GGA and mBJ-GGA. The effect of X cations replacement on the structural, electronic band structure, density of states and optical properties were highlighted and explained. Our results are in good agreement with the previous theoretical and experimental data. As far as we know, for the first time we find the effects of temperature and pressure on thermal parameters of CuAlTe2 and CuGaTe2 compounds. Thermal properties are very useful for optimizing crystal growth, and predict photovoltaic applications on extreme thermodynamic conditions.


2021 ◽  
Vol 11 (23) ◽  
pp. 11341
Author(s):  
Sungjin Park ◽  
Byungki Ryu ◽  
SuDong Park

Thermoelectric power generation is a promising candidate for automobile energy harvesting technologies because it is eco-friendly and durable owing to direct power conversion from automobile waste heat. Because Bi−Te systems are well-known thermoelectric materials, research on (Bi2)m(Bi2Te3)n homologous series can aid the development of efficient thermoelectric materials. However, to the best of our knowledge, (Bi2)m(Bi2Te3)n has been studied through experimental synthesis and measurements only. Therefore, we performed density functional theory calculations of nine members of (Bi2)m(Bi2Te3)n to investigate their structure, phase stability, and electronic band structures. From our calculations, although the total energies of all nine phases are slightly higher than their convex hulls, they can be metastable owing to their very small energy differences. The electric transport types of (Bi2)m(Bi2Te3)n do not change regardless of the exchange–correlation functionals, which cause tiny changes in the atomic structures, phase stabilities, and band structures. Additionally, only two phases (Bi8Te9, BiTe) became semimetallic or semiconducting depending on whether spin–orbit interactions were included in our calculations, and the electric transport types of the other phases were unchanged. As a result, it is expected that Bi2Te3, Bi8Te9, and BiTe are candidates for thermoelectric materials for automobile energy harvesting technologies because they are semiconducting.


2021 ◽  
Author(s):  
Charlie Ruffman ◽  
James Thomas Alan Gilmour ◽  
Anna L. Garden

The thermodynamics of hydrogen evolution on MoS2 nanotubes is studied for the first time using periodic density functional theory calculations to obtain hydrogen adsorption free energies (ΔGH ads) on pristine...


Author(s):  
Qiang Wan ◽  
Juan Li ◽  
Rong Jiang ◽  
Sen Lin

Here, we study the Al or B atom doped carbon nitride (g-C3N4 and C2N) as catalysts for H2 activation and acetylene hydrogenation by density functional theory calculations. The Al or...


Nanoscale ◽  
2019 ◽  
Vol 11 (18) ◽  
pp. 9000-9007 ◽  
Author(s):  
Imran Muhammad ◽  
Huanhuan Xie ◽  
Umer Younis ◽  
Yu Qie ◽  
Waseem Aftab ◽  
...  

Motivated by the feasibility of hybridizing C- and BN-units as well as the recent synthesis of a triphenylene-graphdiyne (TpG) monolayer, for the first time we explore the stability and electronic band structure of a Tp-BNyne monolayer composed of C-chains and the BN analog of triphenylene (Tp-BNyne) by using density functional theory.


Sign in / Sign up

Export Citation Format

Share Document