scholarly journals Optical Control of Cannabinoid Receptor 2–Mediated Ca2+ Release Enabled By Synthesis of Photoswitchable Probes

Author(s):  
Roman Sarott ◽  
Alexander E.G. Viray ◽  
Patrick Pfaff ◽  
Anastasiia Sadybekov ◽  
Gabriela Rajic ◽  
...  

Cannabinoid receptor 2 (CB2) is a promising target for the treatment of neuroinflammation and other diseases. Howev-er, lack of understanding of its complex signaling in cells and tissues complicates its therapeutic targeting. For the first time we show that HU308 increases cytosolic Ca<sup>2+</sup> levels in mammalian cells via CB2 and phospholipase C. We report the synthesis of pho-toswitchable derivatives of CB2 agonist HU308, azo-HU308s, from central building block 3-OTf-HU308. Azo-HU308s enable optical control over CB2 activity with spatiotemporal precision, as demonstrated in real-time Ca<sup>2+</sup> fluorescence imaging. Our findings reveal a novel messenger pathway by which HU308 and its derivatives can affect cellular excitability, and demonstrate the utility of chemical photoswitches to control CB2 signaling in real time.

2020 ◽  
Author(s):  
Roman Sarott ◽  
Alexander E.G. Viray ◽  
Patrick Pfaff ◽  
Anastasiia Sadybekov ◽  
Gabriela Rajic ◽  
...  

Cannabinoid receptor 2 (CB2) is a promising target for the treatment of neuroinflammation and other diseases. Howev-er, lack of understanding of its complex signaling in cells and tissues complicates its therapeutic targeting. For the first time we show that HU308 increases cytosolic Ca<sup>2+</sup> levels in mammalian cells via CB2 and phospholipase C. We report the synthesis of pho-toswitchable derivatives of CB2 agonist HU308, azo-HU308s, from central building block 3-OTf-HU308. Azo-HU308s enable optical control over CB2 activity with spatiotemporal precision, as demonstrated in real-time Ca<sup>2+</sup> fluorescence imaging. Our findings reveal a novel messenger pathway by which HU308 and its derivatives can affect cellular excitability, and demonstrate the utility of chemical photoswitches to control CB2 signaling in real time.


Author(s):  
Roman C. Sarott ◽  
Alexander E. G. Viray ◽  
Patrick Pfaff ◽  
Anastasiia Sadybekov ◽  
Gabriela Rajic ◽  
...  

2021 ◽  
Author(s):  
li jiang ◽  
Lin Li ◽  
Qing Luo ◽  
Bin Shang ◽  
Xiaomin Yang ◽  
...  

Abstract Background and Purpose: Traumatic brain injury (TBI) destroys white matter, and this destruction is aggravated by secondary neuroinflammatory reactions. Although white matter injury (WMI) is strongly correlated with poor neurological function, understanding of white matter integrity maintenance is limited, and no available therapies can effectively protect white matter. One candidate approach that may fulfill this goal is cannabinoid receptor 2 (CB2) agonist treatment. Here, we confirmed that a selective CB2 agonist, JWH133, protected white matter after TBI.Methods: TBI was induced by Controlled cortical impact (CCI). The motor evoked potentials (MEPs), open field test, and Morris water maze test were used to assess neurobehavioral outcomes. Brain tissue loss, WM damage, Endoplasmic reticulum stress (ER stress), and microglia responses were evaluated after TBI. The functional integrity of WM was measured by diffusion tensor imaging (DTI) and transmission electron microscopy (TEM). Primary microglia and oligodendrocyte cocultures were used for additional mechanistic studies.Results: JWH133 increased myelin basic protein (MBP) and neurofilament heavy chain (NF200) levels and anatomic preservation of myelinated axons revealed by DTI and TEM. JWH133 also increased the numbers of oligodendrocyte precursor cells and mature oligodendrocytes. Furthermore, JWH133 drove microglial polarization toward the protective M2 phenotype and modulated the redistribution of microglia in the striatum. Further investigation of the underlying mechanism revealed that JWH133 downregulated phosphorylation of the protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK) signaling pathway and its downstream signals eukaryotic translation initiation factor 2 α (eIF2α), activating transcription factor 4 (ATF4) and Growth arrest and DNA damage-inducible protein (GADD34); this downregulation was followed by p-Protein kinase B(p-Akt) upregulation. In primary cocultures of microglia and oligodendrocytes, JWH133 decreased phosphorylated PERK expression in microglia stimulated with tunicamycin and facilitated oligodendrocyte survival. These data reveal that JWH133 ultimately alleviates WMI and improves neurological behavior following TBI.Conclusions: This work illustrates the PERK-mediated interaction between microglia and oligodendrocytes. In addition, the results are consistent with recent findings that microglial polarization switching accelerates WMI, highlighting a previously unexplored role for CB2 agonists. Thus, CB2 agonists are potential therapeutic agents for TBI and other neurological conditions involving white matter destruction.


2021 ◽  
Author(s):  
li jiang ◽  
Lin Li ◽  
Qing Luo ◽  
Bin Shang ◽  
Xiaomin Yang ◽  
...  

Abstract Background and Purpose: Traumatic brain injury (TBI) destroys white matter, and this destruction is aggravated by secondary neuroinflammatory reactions. Although white matter injury (WMI) is strongly correlated with poor neurological function, understanding of white matter integrity maintenance is limited, and no available therapies can effectively protect white matter. One candidate approach that may fulfill this goal is cannabinoid receptor 2 (CB2) agonist treatment. Here, we confirmed that a selective CB2 agonist, JWH133, protected white matter after TBI.Methods: The controlled cortical impact (CCI) was used to establish a moderate TBI model in adult male Sprague-Dawley rats (8–10 weeks, 250–300g). The motor evoked potentials (MEPs), open field test, and Morris water maze test were used to assess neurobehavioral outcomes. Brain tissue loss, WM damage, Endoplasmic reticulum stress (ER stress), and microglia responses were evaluated after TBI. The functional integrity of WM was measured by diffusion tensor imaging (DTI) and transmission electron microscopy (TEM). Primary microglia and oligodendrocyte cocultures were used for additional mechanistic studies.Results: JWH133 increased myelin basic protein (MBP) and neurofilament heavy chain (NF200) levels and anatomic preservation of myelinated axons revealed by DTI and TEM. JWH133 also increased the numbers of oligodendrocyte precursor cells and mature oligodendrocytes. Furthermore, JWH133 drove microglial polarization toward the protective M2 phenotype and modulated the redistribution of microglia in the striatum. Further investigation of the underlying mechanism revealed that JWH133 downregulated phosphorylation of the protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK) signaling pathway and its downstream signals eukaryotic translation initiation factor 2 α (eIF2α), activating transcription factor 4 (ATF4) and Growth arrest and DNA damage-inducible protein (GADD34); this downregulation was followed by p-Protein kinase B(p-Akt) upregulation. In primary cocultures of microglia and oligodendrocytes, JWH133 decreased phosphorylated PERK expression in microglia stimulated with tunicamycin and facilitated oligodendrocyte survival. These data reveal that JWH133ultimately alleviates WMI and improves neurological behavior following TBI. However, these effects were were prevented by SR144528(i.p. injection 3 min before receiving JWH133 intraperitoneally), a selective CB2 antagonist.Conclusions: This work illustrates the PERK-mediated interaction between microglia and oligodendrocytes. In addition, the results are consistent with recent findings that microglial polarization switching accelerates WMI, highlighting a previously unexplored role for CB2 agonists. Thus, CB2 agonists are potential therapeutic agents for TBI and other neurological conditions involving white matter destruction.


2012 ◽  
Vol 258 (2) ◽  
pp. 256-267 ◽  
Author(s):  
Udai P. Singh ◽  
Narendra P. Singh ◽  
Balwan Singh ◽  
Robert L. Price ◽  
Mitzi Nagarkatti ◽  
...  

2018 ◽  
Author(s):  
Elaine A. Kelly ◽  
Judith E. Houston ◽  
Rachel Evans

Understanding the dynamic self-assembly behaviour of azobenzene photosurfactants (AzoPS) is crucial to advance their use in controlled release applications such as<i></i>drug delivery and micellar catalysis. Currently, their behaviour in the equilibrium <i>cis-</i>and <i>trans</i>-photostationary states is more widely understood than during the photoisomerisation process itself. Here, we investigate the time-dependent self-assembly of the different photoisomers of a model neutral AzoPS, <a>tetraethylene glycol mono(4′,4-octyloxy,octyl-azobenzene) </a>(C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>) using small-angle neutron scattering (SANS). We show that the incorporation of <i>in-situ</i>UV-Vis absorption spectroscopy with SANS allows the scattering profile, and hence micelle shape, to be correlated with the extent of photoisomerisation in real-time. It was observed that C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>could switch between wormlike micelles (<i>trans</i>native state) and fractal aggregates (under UV light), with changes in the self-assembled structure arising concurrently with changes in the absorption spectrum. Wormlike micelles could be recovered within 60 seconds of blue light illumination. To the best of our knowledge, this is the first time the degree of AzoPS photoisomerisation has been tracked <i>in</i><i>-situ</i>through combined UV-Vis absorption spectroscopy-SANS measurements. This technique could be widely used to gain mechanistic and kinetic insights into light-dependent processes that are reliant on self-assembly.


2019 ◽  
Vol 15 (6) ◽  
pp. 568-573
Author(s):  
Soheil Sedaghat ◽  
Ommoleila Molavi ◽  
Akram Faridi ◽  
Ali Shayanfar ◽  
Mohammad Reza Rashidi

Background: Signal transducer and activator of transcription 3 (STAT3), an oncogenic protein found constitutively active in many types of human malignancies, is considered to be a promising target for cancer therapy. Objective: In this study for the first time, a simple and accurate method has been developed for the determination of a STAT3 dimerization inhibitor called stattic in aqueous and plasma samples. Methods: A reverse-phase high-performance liquid chromatography (RP-HPLC) composed of C18 column as stationary phase, and the mixture of acetonitrile (60%) and water (40%) as mobile phase with a UV detection at 215 nm were applied for quantification of stattic. The developed method was validated by Food and Drug Administration (FDA) guideline. Results: The method provided a linear range between 1-40 and 2.5-40 µg mL-1 for aqueous and plasma samples, respectively, with a correlation coefficient of 0.999. The accuracy (as recovery) of the developed method was found to be between 95-105% for aqueous medium and 85-115% for plasma samples. The precision (as relative standard deviation) for aqueous and plasma samples was less than 6% and 15%, respectively. The sensitivity of the developed method based on FDA guideline was 1 µg mL-1 for aqueous and 2.5 µg mL-1 for plasma samples. Conclusion: These results show that the established method is a fast and accurate quantification for stattic in aqueous and plasma samples.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 481
Author(s):  
Gemma G. Martínez-García ◽  
Raúl F. Pérez ◽  
Álvaro F. Fernández ◽  
Sylvere Durand ◽  
Guido Kroemer ◽  
...  

Autophagy is an essential protective mechanism that allows mammalian cells to cope with a variety of stressors and contributes to maintaining cellular and tissue homeostasis. Due to these crucial roles and also to the fact that autophagy malfunction has been described in a wide range of pathologies, an increasing number of in vivo studies involving animal models targeting autophagy genes have been developed. In mammals, total autophagy inactivation is lethal, and constitutive knockout models lacking effectors of this route are not viable, which has hindered so far the analysis of the consequences of a systemic autophagy decline. Here, we take advantage of atg4b−/− mice, an autophagy-deficient model with only partial disruption of the process, to assess the effects of systemic reduction of autophagy on the metabolome. We describe for the first time the metabolic footprint of systemic autophagy decline, showing that impaired autophagy results in highly tissue-dependent alterations that are more accentuated in the skeletal muscle and plasma. These changes, which include changes in the levels of amino-acids, lipids, or nucleosides, sometimes resemble those that are frequently described in conditions like aging, obesity, or cardiac damage. We also discuss different hypotheses on how impaired autophagy may affect the metabolism of several tissues in mammals.


Sign in / Sign up

Export Citation Format

Share Document