scholarly journals Understanding the Solid-State Assembly of Pharmaceutically-Relevant N,N-Dimethyl-O-Thiocarbamates in the Absence of Labile Hydrogen Bonds

Author(s):  
Davin Tan ◽  
Zi xuan Ng ◽  
Rakesh Ganguly ◽  
yongxin Li ◽  
Han Sen Soo ◽  
...  

There are many pharmaceutical compounds that do not contain N-H, O-H, and S-H hydrogen-bond donor functional groups. Some of these compounds are N,N-disubstituted O-thiocarbamates which exhibit desirable medicinal properties, yet the study of these important molecules in the solid-state has been relatively unexplored. Herein, we report the synthesis and analysis of a series of N,N-dimethyl-O-thiocarbamates, and use X-ray diffraction techniques to gain insight into how these molecules self-assemble in the solid-state and discern certain packing patterns. It was observed that the aryl-thiocarbamate C-O bonds are twisted such that the planar aryl and carbamate moieties are orthogonal. Such a non-planar molecular geometry affects the way the molecules pack and crystal structure analyses revealed four general modes in which the molecules can associate in the solid-state, with some members of the series displaying isostructural relationships. The crystal structure of a well-known yet unreported O-thiocarbamate drug, Tolnaftate, is also reported. Additionally, Hirshfeld surface analysis was also performed on these compounds as well as several related O-thiocarbamates in the literature.<br>

2020 ◽  
Author(s):  
Davin Tan ◽  
Zi xuan Ng ◽  
Rakesh Ganguly ◽  
yongxin Li ◽  
Han Sen Soo ◽  
...  

There are many pharmaceutical compounds that do not contain N-H, O-H, and S-H hydrogen-bond donor functional groups. Some of these compounds are N,N-disubstituted O-thiocarbamates which exhibit desirable medicinal properties, yet the study of these important molecules in the solid-state has been relatively unexplored. Herein, we report the synthesis and analysis of a series of N,N-dimethyl-O-thiocarbamates, and use X-ray diffraction techniques to gain insight into how these molecules self-assemble in the solid-state and discern certain packing patterns. It was observed that the aryl-thiocarbamate C-O bonds are twisted such that the planar aryl and carbamate moieties are orthogonal. Such a non-planar molecular geometry affects the way the molecules pack and crystal structure analyses revealed four general modes in which the molecules can associate in the solid-state, with some members of the series displaying isostructural relationships. The crystal structure of a well-known yet unreported O-thiocarbamate drug, Tolnaftate, is also reported. Additionally, Hirshfeld surface analysis was also performed on these compounds as well as several related O-thiocarbamates in the literature.<br>


2020 ◽  
Vol 75 (4) ◽  
pp. 365-369
Author(s):  
Long Tang ◽  
Yu Pei Fu ◽  
Na Cui ◽  
Ji Jiang Wang ◽  
Xiang Yang Hou ◽  
...  

AbstractA new metal-organic framework, [Pb(hmpcaH)2]n (1), has been hydrothermally synthesized from Pb(OAc)2 · 3H2O and 2-hydroxy-6-methylpyridine-4-carboxylic acid (hmpcaH2; 2), and characterized by IR spectroscopy, elemental and thermogravimetric analysis, and single-crystal X-ray diffraction. In complex 1, each hmpcaH− ligand represents a three-connected node to combine with the hexacoordinated Pb(II) ions, generating a 3D binodal (3,6)-connected ant network. The crystal structure of 2 was determined. The solid-state fluorescence properties of 1 and 2 were investigated.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4404
Author(s):  
Shengyang Guan ◽  
David C. Mayer ◽  
Christian Jandl ◽  
Sebastian J. Weishäupl ◽  
Angela Casini ◽  
...  

A new solvatomorph of [Au3(1-Methylimidazolate)3] (Au3(MeIm)3)—the simplest congener of imidazolate-based Au(I) cyclic trinuclear complexes (CTCs)—has been identified and structurally characterized. Single-crystal X-ray diffraction revealed a dichloromethane solvate exhibiting remarkably short intermolecular Au⋯Au distances (3.2190(7) Å). This goes along with a dimer formation in the solid state, which is not observed in a previously reported solvent-free crystal structure. Hirshfeld analysis, in combination with density functional theory (DFT) calculations, indicates that the dimerization is generally driven by attractive aurophilic interactions, which are commonly associated with the luminescence properties of CTCs. Since Au3(MeIm)3 has previously been reported to be emissive in the solid-state, we conducted a thorough photophysical study combined with phase analysis by means of powder X-ray diffraction (PXRD), to correctly attribute the photophysically active phase of the bulk material. Interestingly, all investigated powder samples accessed via different preparation methods can be assigned to the pristine solvent-free crystal structure, showing no aurophilic interactions. Finally, the observed strong thermochromism of the solid-state material was investigated by means of variable-temperature PXRD, ruling out a significant phase transition being responsible for the drastic change of the emission properties (hypsochromic shift from 710 nm to 510 nm) when lowering the temperature down to 77 K.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ryosuke Sinmyo ◽  
Elena Bykova ◽  
Sergey V. Ovsyannikov ◽  
Catherine McCammon ◽  
Ilya Kupenko ◽  
...  

Abstract Iron oxides are fundamentally important compounds for basic and applied sciences as well as in numerous industrial applications. In this work we report the synthesis and investigation of a new binary iron oxide with the hitherto unknown stoichiometry of Fe7O9. This new oxide was synthesized at high-pressure high-temperature (HP-HT) conditions, and its black single crystals were successfully recovered at ambient conditions. By means of single crystal X-ray diffraction we determined that Fe7O9 adopts a monoclinic C2/m lattice with the most distorted crystal structure among the binary iron oxides known to date. The synthesis of Fe7O9 opens a new portal to exotic iron-rich (M,Fe)7O9 oxides with unusual stoichiometry and distorted crystal structures. Moreover, the crystal structure and phase relations of such new iron oxide groups may provide new insight into the cycling of volatiles in the Earth’s interior.


Author(s):  
Hongqiang Cui ◽  
Yongze Cao ◽  
Lei Zhang ◽  
Yuhang Zhang ◽  
Siying Ran ◽  
...  

Er3+ with different concentrations doped K2Yb(PO4)(MoO4) phosphors were prepared by a solid-state reaction method, and the layered orthorhombic crystal structure of the samples was confirmed by X-ray diffraction (XRD). Under...


1977 ◽  
Vol 30 (8) ◽  
pp. 1837 ◽  
Author(s):  
DPG Hamon ◽  
CL Raston ◽  
GF Taylor ◽  
JN Varghese ◽  
AH White

The crystal structure of the title compound, C12H18, has been determined at 295 K by X-ray diffraction and refined by full-matrix least squares to a residual of 0.049 for 216 ?observed? reflections; molecular geometry has been corrected for the effects of thermal motion using a rigid body approximation. Crystals are hexagonal, P63/m, a = 6.582(1), c = 11.843(3) Ǻ, Z = 2, the molecules occupying a hexagonal close- packed array.


2009 ◽  
Vol 64 (7) ◽  
pp. 875-878 ◽  
Author(s):  
Hamdi Ben Yahia ◽  
Etienne Gaudin ◽  
Jacques Darriet

The new compound AgMnPO4 has been synthesized by a solid-state reaction route. Its crystal structure was determined from single-crystal X-ray diffraction data. AgMnPO4 crystallizes with triclinic symmetry, space group P1̄, a = 9.6710(6), b = 5.695(2), c = 6.629(3) Å , α = 102.55(3), β = 105.85(2), γ = 80.70(2)◦, and Z = 4. Its structure is built up from MnO6, MnO5 and PO4 polyhedra forming tunnels filled with silver atoms.


Sign in / Sign up

Export Citation Format

Share Document