scholarly journals Organic Photostimulated Luminescence

Author(s):  
Manabu Sakurai ◽  
Ryota Kabe ◽  
Masaaki Fuki ◽  
Zesen Lin ◽  
Kazuya Jinnai ◽  
...  

Photostimulated luminescence, which allows energy or data to be stored and released using electromagnetic waves as both the input and output, has attracted considerable interest in the fields of biomedical and informatics technologies, but this phenomenon is mostly limited to solid inorganic materials. Here, we report photostimulated luminescence from purely organic blend films composed of electron donor, acceptor, and trap/emitter molecules. In the films, charges are accumulated as radical ions by ultraviolet light irradiation and then extracted by near infrared light irradiation to produce visible light. Films are capable of multiple cycles (>10 times) of organic photostimulated luminescence, which was still observable from films left in the dark at room temperature for one week after excitation, and emission color could be varied by changing the trap/emitter molecules. These findings will broadly impact existing applications and provide new prospects for innovative flexible devices.

2020 ◽  
Author(s):  
Manabu Sakurai ◽  
Ryota Kabe ◽  
Masaaki Fuki ◽  
Zesen Lin ◽  
Kazuya Jinnai ◽  
...  

Photostimulated luminescence, which allows energy or data to be stored and released using electromagnetic waves as both the input and output, has attracted considerable interest in the fields of biomedical and informatics technologies, but this phenomenon is mostly limited to solid inorganic materials. Here, we report photostimulated luminescence from purely organic blend films composed of electron donor, acceptor, and trap/emitter molecules. In the films, charges are accumulated as radical ions by ultraviolet light irradiation and then extracted by near infrared light irradiation to produce visible light. Films are capable of multiple cycles (>10 times) of organic photostimulated luminescence, which was still observable from films left in the dark at room temperature for one week after excitation, and emission color could be varied by changing the trap/emitter molecules. These findings will broadly impact existing applications and provide new prospects for innovative flexible devices.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Manabu Sakurai ◽  
Ryota Kabe ◽  
Masaaki Fuki ◽  
Zesen Lin ◽  
Kazuya Jinnai ◽  
...  

AbstractPhotostimulated luminescence allows energy or data to be stored and released using electromagnetic waves as both the input and output, and has attracted considerable interest in the fields of biomedical and information technologies. However, this phenomenon is mostly limited to solid inorganic materials. Here, we report photostimulated luminescence from purely organic blend films, composed of electron donor, acceptor, and trap/emitter molecules. Charges in the films are accumulated as radical ions by ultraviolet light irradiation and then extracted by near-infrared light irradiation. Even after storage in the dark for one week they produce visible light with good repeatability, color tunability, and are responsive to weak external magnetic fields. These findings might broadly impact existing applications and provide new prospects for innovative flexible devices.


2021 ◽  
Vol 13 (4) ◽  
pp. 4844-4852
Author(s):  
Saji Uthaman ◽  
Shameer Pillarisetti ◽  
Hye Suk Hwang ◽  
Ansuja Pulickal Mathew ◽  
Kang Moo Huh ◽  
...  

2017 ◽  
Vol 5 (46) ◽  
pp. 12163-12171 ◽  
Author(s):  
Yinghui He ◽  
Jesse T. E. Quinn ◽  
Dongliang Hou ◽  
Jenner H.L. Ngai ◽  
Yuning Li

A novel small bandgap donor–acceptor polymer with a very small band gap of 0.95 eV shows promising photoresponse under near infrared light in phototransistors.


2011 ◽  
Vol 152 ◽  
pp. e137-e139 ◽  
Author(s):  
Daxiang Cui ◽  
Peng Huang ◽  
Chunlei Zhang ◽  
Cengiz S. Ozkan ◽  
Bifeng Pan ◽  
...  

2020 ◽  
Vol 142 (27) ◽  
pp. 11857-11864 ◽  
Author(s):  
Kristin Klaue ◽  
Wenjie Han ◽  
Pauline Liesfeld ◽  
Fabian Berger ◽  
Yves Garmshausen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document