scholarly journals Highly Sensitive SERS Detection of Neonicotinoid Pesticides. Complete Raman Spectral Assignment of Clothianidin and Imidacloprid

Author(s):  
Niamh Creedon ◽  
Pierre Lovera ◽  
Jose Julio Gutierrez Moreno ◽  
Michael Nolan ◽  
Alan O'Riordan

The use of Surface Enhanced Raman Spectroscopy in the development of low cost, portable sensor devices that can be used in the field for nitroguanidine neonicotinoid insecticide detection is appealing. However, a key challenge to achieving this goal is the lack of detailed analysis and vibrational assignment for the most popular neonicotinoids. To make progress towards this goal, this paper presents an analysis of the bulk Raman and SERS spectra of two neonicotinoids, namely clothianidin and imidacloprid. Combined with first principles simulations, this allowed assignment of all Raman spectral modes for both molecules. To our knowledge, this is the first report of SERS analysis and vibrational assignment of Clothianidin and a comprehensive assignment and analysis is provided for imidacloprid. Silver nanostructured surfaces were fabricated for qualitative SERS analysis, which provides the characteristic spectra of the target molecules, and demonstrates the ability of SERS to sense these molecules at concentrations as low as 1 ng/L. These detection limits are significantly lower than reported solid state electrochemical techniques and are on a par with high-end chromatographic-mass spectroscopy laboratory methods. These SERS sensors thus allow for the selective and sensitive detection of neonicotinoids, and provides complementary qualitative and quantitative data for the molecules. Furthermore, this technique can be adapted to portable devices for remote sensing applications. Further work focuses on integrating our device with an electronics platform for truly portable residue detection.

2020 ◽  
Author(s):  
Niamh Creedon ◽  
Pierre Lovera ◽  
Jose Julio Gutierrez Moreno ◽  
Michael Nolan ◽  
Alan O'Riordan

The use of Surface Enhanced Raman Spectroscopy in the development of low cost, portable sensor devices that can be used in the field for nitroguanidine neonicotinoid insecticide detection is appealing. However, a key challenge to achieving this goal is the lack of detailed analysis and vibrational assignment for the most popular neonicotinoids. To make progress towards this goal, this paper presents an analysis of the bulk Raman and SERS spectra of two neonicotinoids, namely clothianidin and imidacloprid. Combined with first principles simulations, this allowed assignment of all Raman spectral modes for both molecules. To our knowledge, this is the first report of SERS analysis and vibrational assignment of Clothianidin and a comprehensive assignment and analysis is provided for imidacloprid. Silver nanostructured surfaces were fabricated for qualitative SERS analysis, which provides the characteristic spectra of the target molecules, and demonstrates the ability of SERS to sense these molecules at concentrations as low as 1 ng/L. These detection limits are significantly lower than reported solid state electrochemical techniques and are on a par with high-end chromatographic-mass spectroscopy laboratory methods. These SERS sensors thus allow for the selective and sensitive detection of neonicotinoids, and provides complementary qualitative and quantitative data for the molecules. Furthermore, this technique can be adapted to portable devices for remote sensing applications. Further work focuses on integrating our device with an electronics platform for truly portable residue detection.


The Analyst ◽  
2015 ◽  
Vol 140 (3) ◽  
pp. 779-785 ◽  
Author(s):  
Ashley M. Robinson ◽  
Lili Zhao ◽  
Marwa Y. Shah Alam ◽  
Paridhi Bhandari ◽  
Scott G. Harroun ◽  
...  

Modification of metal-coated zari fabric chips with silver nanoparticles results in sensitive, affordable SERS substrates which are useful for a wide range of chemical sensing applications.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1197
Author(s):  
Xiaoyu Zhao ◽  
Aonan Zhu ◽  
Yaxin Wang ◽  
Yongjun Zhang ◽  
Xiaolong Zhang

In the present study, a sunflower-like nanostructure array composed of a series of synaptic nanoparticles and nanospheres was manufactured through an efficient and low-cost colloidal lithography technique. The primary electromagnetic field contribution generated by the synaptic nanoparticles of the surface array structures was also determined by a finite-difference time-domain software to simulate the hotspots. This structure exhibited high repeatability and excellent sensitivity; hence, it was used as a surface-enhanced Raman spectroscopy (SERS) active substrate to achieve a rapid detection of ultra-low concentrations of Alpha-fetoprotein (AFP). This study demonstrates the design of a plasmonic structure with strong electromagnetic coupling, which can be used for the rapid detection of AFP concentration in clinical medicine.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 688 ◽  
Author(s):  
Asli Yilmaz ◽  
Mehmet Yilmaz

Despite numerous attempts to fabricate the core–shell nanoparticles, novel, simple, and low-cost approaches are still required to produce these efficient nanosystems. In this study, we propose the synthesis of bimetallic core–shell nanoparticles of gold (AuNP) and silver (AgNP) nanostructures via a bioinspired polydopamine (PDOP) layer and their employment as a surface-enhanced Raman spectroscopy (SERS) platform. Herein, the PDOP layer was used as an interface between nanostructures as well as stabilizing and reducing agents for the deposition of silver ions onto the AuNPs. UV-vis absorption spectra and electron microscope images confirmed the deposition of the silver ions and the formation of core–shell nanoparticles. SERS activity tests indicated that both the PDOP thickness and silver deposition time are the dominant parameters that determine the SERS performances of the proposed core–shell system. In comparison to bare AuNPs, more than three times higher SERS signal intensity was obtained with an enhancement factor of 3.5 × 105.


2006 ◽  
Vol 951 ◽  
Author(s):  
Motofumi Suzuki ◽  
Kaoru Nakajima ◽  
Kenji Kimura ◽  
Takao Fukuoka ◽  
Yasushige Mori

ABSTRACTWe have demonstrated surface-enhanced Raman spectroscopy on arrays of Au nanorods aligned in line by a dynamic oblique deposition technique. For the light polarized along the major axis of the nanorods, the plasma resonance of the Au nanorods has been tuned to a wavelength suitable for Raman spectroscopy. The Raman scattering on the discrete nanorods is enhanced significantly compared with that on semi continuous Au films. Since the preparation process is physically bottom-up, it is robust in its selection of the materials and is useful in providing the SERS sensors at low cost.


2021 ◽  
Author(s):  
revathy m s ◽  
D Murugesan ◽  
Naidu Dhanpal Jayram

Abstract Thin films and Surface Enhanced Raman spectroscopy have a strong bonding towards development of Sensors. From last 4 decades SERS has been used as effective tool for detection of toxic dyes, in food industry and agriculture world. To minimize the cost and fabrication over large surface is the most challenging task in substrate fabrication. In the present work an attempt has been made towards dual coatings, which could act as an effective SERS Substrates. An effective and facile approach of low cost bi-metallic Nanostructured film has been fabricated using thermal evaporation. Using the standard characterization techniques such as FE-SEM and XRD, the obtained films were Rhodamine 6G was used as an analyte for the SERS studies. The detection of R6G was up to 10− 10mol l− 1solution.The present bi-metallic coating can be serves as an excellent SERS active surface and provides a versatile pathway to fabricate anisotropic nanostructure on a glass film.


MRS Advances ◽  
2017 ◽  
Vol 2 (19-20) ◽  
pp. 1077-1082 ◽  
Author(s):  
Guinevere Strack ◽  
Michaela Fitzgerald ◽  
Junwei Su ◽  
Margery G. H. Pelletier ◽  
Peter Gaines ◽  
...  

ABSTRACTHerein, we demonstrate a facile, rapid, and scalable method to fabricate polymer-based gratings for surface-enhanced Raman spectroscopy (SERS) sensors. To accomplish this, epoxy nanostripe arrays on silicon substrates were prepared using thermal annealing and UV-cross-linking. After preparation of the nanostripe arrays, the surface was briefly treated with oxygen plasma, which decreased the surface energy and enabled the growth of AgNPs on the polymer surface using a simple, low-cost, aqueous-based synthesis procedure. The SERS substrates exhibited a detection limit of ∼1 pM using rhodamine 6G (R6G). In addition, preliminary work with E. coli DH5 showed that the nanoimprinted substrates can be used to obtain Raman spectra of washed bacteria cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Angela Capaccio ◽  
Antonio Sasso ◽  
Giulia Rusciano

AbstractThe fabrication of plasmonic nanostructures with a reliable, low cost and easy approach has become a crucial and urgent challenge in many fields, including surface-enhanced Raman spectroscopy (SERS) based applications. In this frame, nanoporous metal films are quite attractive, due to their intrinsic large surface area and high density of metal nanogaps, acting as hot-spots for Raman signal enhancement. In this paper, we report a detailed study on the fabrication of nanoporous silver-based SERS substrates, obtained by the application of two successive treatments with an Inductively Coupled Plasma (ICP) system, using synthetic air and Ar as feeding gases. The obtained substrates exhibit a quite broad plasmonic response, covering the Vis–NIR range, and an enhancement factor reaching 6.5 $$\times\, 10^7$$ × 10 7 , estimated by using 4-mercaptobenzoic acid (4-MBA) as probe molecule at 532 nm. Moreover, the substrates exhibit a quite good spatial reproducibility on a centimeter scale, which assures a good signal stability for analytical measurements. Globally, the developed protocol is easy and cost effective, potentially usable also for mass production thanks to the remarkable inter-batches reproducibility. As such, it holds promise for its use in SERS-based sensing platforms for sensitive detection of targets molecules.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ibrahim Deneme ◽  
Gorkem Liman ◽  
Ayse Can ◽  
Gokhan Demirel ◽  
Hakan Usta

AbstractMolecular engineering via functionalization has been a great tool to tune noncovalent intermolecular interactions. Herein, we demonstrate three-dimensional highly crystalline nanostructured D(C7CO)-BTBT films via carbonyl-functionalization of a fused thienoacene π-system, and strong Raman signal enhancements in Surface-Enhanced Raman Spectroscopy (SERS) are realized. The small molecule could be prepared on the gram scale with a facile synthesis-purification. In the engineered films, polar functionalization induces favorable out-of-plane crystal growth via zigzag motif of dipolar C = O···C = O interactions and hydrogen bonds, and strengthens π-interactions. A unique two-stage film growth behavior is identified with an edge-on-to-face-on molecular orientation transition driven by hydrophobicity. The analysis of the electronic structures and the ratio of the anti-Stokes/Stokes SERS signals suggests that the π-extended/stabilized LUMOs with varied crystalline face-on orientations provide the key properties in the chemical enhancement mechanism. A molecule-specific Raman signal enhancement is also demonstrated on a high-LUMO organic platform. Our results demonstrate a promising guidance towards realizing low-cost SERS-active semiconducting materials, increasing structural versatility of organic-SERS platforms, and advancing molecule-specific sensing via molecular engineering.


Sign in / Sign up

Export Citation Format

Share Document