scholarly journals Nfe2 is dispensable for early but required for adult thrombocyte formation and function in zebrafish

2018 ◽  
Vol 2 (23) ◽  
pp. 3418-3427 ◽  
Author(s):  
Megan S. Rost ◽  
Ilya Shestopalov ◽  
Yang Liu ◽  
Andy H. Vo ◽  
Catherine E. Richter ◽  
...  

AbstractThe NFE2 transcription factor is expressed in multiple hematopoietic lineages with a well-defined role in regulating megakaryocyte biogenesis and platelet production in mammals. Mice deficient in NFE2 develop severe thrombocytopenia with lethality resulting from neonatal hemorrhage. Recent data in mammals reveal potential differences in embryonic and adult thrombopoiesis. Multiple studies in zebrafish have revealed mechanistic insights into hematopoiesis, although thrombopoiesis has been less studied. Rather than platelets, zebrafish possess thrombocytes, which are nucleated cells with similar functional properties. Using transcription activator-like effector nucleases to generate mutations in nfe2, we show that unlike mammals, zebrafish survive to adulthood in the absence of Nfe2. Despite developing severe thrombocytopenia, homozygous mutants do not display overt hemorrhage or reduced survival. Surprisingly, quantification of circulating thrombocytes in mutant 6-day-old larvae revealed no significant differences from wild-type siblings. Both wild-type and nfe2 null larvae formed thrombocyte-rich clots in response to endothelial injury. In addition, ex vivo thrombocytic colony formation was intact in nfe2 mutants, and adult kidney marrow displayed expansion of hematopoietic progenitors. These data suggest that loss of Nfe2 results in a late block in adult thrombopoiesis, with secondary expansion of precursors: features consistent with mammals. Overall, our data suggest parallels with erythropoiesis, including distinct primitive and definitive pathways of development and potential for a previously unknown Nfe2-independent pathway of embryonic thrombopoiesis. Long-term homozygous mutant survival will facilitate in-depth study of Nfe2 deficiency in vivo, and further investigation could lead to alternative methodologies for the enhancement of platelet production.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2534-2534
Author(s):  
Megan S Rost ◽  
Ilya Shestopalov ◽  
Yang Liu ◽  
Andy H Vo ◽  
Francesca Barrett ◽  
...  

Abstract The NFE2 transcription factor is expressed in multiple hematopoietic lineages with a well-defined role in regulating megakaryocyte biogenesis and platelet production in mammals. Mice deficient in NFE2 completely lack circulating platelets, causing early lethality due to neonatal hemorrhage. Recent data in mice suggest some differences in embryonic and adult thrombopoiesis, and overexpression of NFE2 in murine bone marrow cells increases megakaryocyte maturation and platelet release, suggesting a role for NFE2 in both early and late megakaryocyte development. Zebrafish have emerged as an excellent model for studying hematopoiesis and thrombopoiesis due to their external development, optical transparency, high fecundity, and conservation of nearly the entire hemostatic system. Rather than platelets, zebrafish possess thrombocytes - nucleated cells believed to be the functional equivalent in mammals. We designed TALENs to target exon 4 of zebrafish nfe2, producing two mutant strains containing either an 8 or 10 base pair deletion, both resulting in a frameshift and null allele. We tracked survival for over one year and found that unlike mammals, zebrafish survive into adulthood in the absence of Nfe2 function with no signs of overt bleeding or lethality. We bred the nfe2 mutation into a transgenic background in which thrombocytes and hematopoietic progenitor cells express green fluorescent protein (Tg(cd41:GFP)) and are characterized by GFPhigh and GFPlow expression, respectively. We performed flow cytometry analysis and found that the percentage of GFPhigh cells (circulating thrombocytes) in the peripheral blood was significantly decreased from 0.67% to 0.2% in homozygous mutants (p < 0.001). In contrast, the percentage of GFPlow cells in the kidney marrow, the site of hematopoiesis in adult zebrafish, was increased from 0.47% to 1.17% in nfe2-/- mutants (p < 0.001). Surprisingly, quantification of circulating thrombocytes in 6 day old nfe2 null zebrafish larvae showed no significant differences from wild type siblings. Finally, we performed colony forming assays on whole kidney marrow lysates to measure the ability of hematopoietic progenitors to differentiate into thrombocytes. Both mutant and wild type adults are capable of producing thrombocytic colonies in the presence of thrombopoietin and erythropoietin. We and others have shown that thrombocytes participate in the formation of induced thrombi upon laser-mediated endothelial injury in zebrafish embryos and larvae. We tested the functionality of nfe2-/- thrombocytes and were surprised to find that wild type and nfe2 null zebrafish larvae form fibrin- and thrombocyte-rich clots in response to endothelial injury at day of life 3 (venous circulation) and 6 (arterial circulation), respectively. Measurement of both the time to occlusion as well as the total number of thrombocytes adhering to the site of injury revealed no significant differences between wild type and nfe2-/- larvae. These data suggest that loss of Nfe2 results in a late block in thrombopoiesis with secondary expansion of thrombocytic precursors, both features that are consistent with mammals. Surprisingly, Nfe2 appears to be dispensable for early embryonic thrombocyte production and function. These results suggest parallels with erythropoiesis, including distinct primitive and definitive pathways of development. This includes the potential for a previously unknown Nfe2-independent pathway of embryonic thrombopoiesis. The long term homozygous mutant survival will also facilitate more in depth study of Nfe2 deficiency in vivo, and further investigation could lead to alternative methodologies for the enhancement of platelet production in vivo or ex vivo. Disclosures Zon: Fate, Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder; Scholar Rock: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder; Marauder Therapeutics: Equity Ownership, Other: Founder.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2103-2103
Author(s):  
Amanda Prislovsky ◽  
Falk Nimmerjahn ◽  
Jeffrey V. Ravetch ◽  
Carl W. Jackson ◽  
Ted S. Strom

Abstract Patients with the Wiskott-Aldrich Syndrome (WAS) have thrombocytopenia and increased platelet consumption rates, and may have reduced platelet production rates. WASP(−) mice have been reported to have only a mild thrombocytopenia. We find that when fully crossed onto the C57Bl/6J background, WASP(−) mice have a >50% reduction in platelet counts. Ex vivo labeled WASP(−)platelets are consumed 2 to 4-fold faster than are WT platelets in WT mice, and with exponential rather than linear kinetics. Clearance rates of WASP(−) platelets in WT mice, and vice versa, indicate that rapid consumption is due to factors both intrinsic and extrinsic to platelets. In vivo biotinylation demonstrates consumption rates comparable to those seen with ex vivo labeling, and shows a normal rate of consumption of WASP(−) reticulated (immature) platelets. Reticulated platelet counts are reduced, indicating that their production rate is reduced. Megakaryocytes are increased in spleen and bone marrow, and in the latter their ploidy distribution is normal, suggesting that impaired platelet production occurs at the level of thrombopoiesis. The absolute turnover rates of mature and reticulated platelets, however, indicate that maturation of the latter can account for only a fraction of the former’s turnover in either WT or WASP(−) mice. A subset of WASP(−) mice show an increased fraction of reticulated platelets and more severe thrombocytopenia, and some members of this subset also express serum anti-platelet antibodies. CMFDA-labeled WASP(−) platelets opsonized with anti-CD61(IgG1) antibody are more susceptible to ex vivo phagocytosis by bone marrow derived macrophages (BMDM) than WT platelets, and as susceptible as CD47(−/−) platelets. After opsonization with 6A6(IgG2b) antibody, WASP(−) platelets are also taken up more rapidly than WT platelets by BMDM, but less rapidly than are CD47(−/−) platelets. The in vivo consumption rate of WASP(−) platelets in WT recipients is more accelerated by opsonization with anti-CD61 antibody than is that of WT platelets. Increased phagocytosis is not due to (A) altered levels of the targeted antigens or of CD47 (B) increased exposure of phosphatidyl serine, or (C) antibody-induced activation as assayed by CD62P expression. Increased phagocytosis is not due to selective sensitivity to IgG1 vs IgG2b antibodies, as opsonization with an engineered 6A6(IgG1) antibody leads to reduced phagocytosis for both CD47(−/−) and WASP(−) platelets. Anti-CD61 opsonized platelets deficient in both WASP and CD47 show markedly increased ex vivo phagocytosis compared to platelets deficient in either protein, suggesting that platelet WASP does not function to amplify signals from platelet CD47 through macrophage SIRP-alpha. These results raise the possibility that the binding of low affinity or low titer antibodies that might have no effect on WT platelets could cause thrombocytopenia when the platelets lack WASP. Alternatively, rapid phagocytosis of opsonized WASP(−) platelets could promote a self-reinforcing cycle of increased host antigen presentation and increased immune responses to host antigens.


2016 ◽  
Vol 115 (02) ◽  
pp. 250-256 ◽  
Author(s):  
Christian A. Di Buduo ◽  
Alessandra Balduini ◽  
David L. Kaplan

SummaryPlatelets, which are released by megakaryocytes, play key roles in haemostasis, angiogenesis, immunity, tissue regeneration and wound healing. The scarcity of clinical cures for life threatening platelet diseases is in a large part due to limited insight into the mechanisms that control the developmental process of megakaryocytes and the mechanisms that govern the production of platelets within the bone marrow. To overcome these limitations, functional human tissue models have been developed and studied to extrapolate ex vivo outcomes for new insight on bone marrow functions in vivo. There are many challenges that these models must overcome, from faithfully mimicking the physiological composition and functions of bone marrow, to the collection of the platelets generated and validation of their viability and function for human use. The overall goal is to identify innovative instruments to study mechanisms of platelet release, diseases related to platelet production and new therapeutic targets starting from human progenitor cells.


Blood ◽  
2010 ◽  
Vol 116 (24) ◽  
pp. 5419-5422 ◽  
Author(s):  
Xingkui Xue ◽  
Nancy K. Pech ◽  
W. Christopher Shelley ◽  
Edward F. Srour ◽  
Mervin C. Yoder ◽  
...  

Abstract Inherited hematologic defects that lack an in vivo selective advantage following gene correction may benefit from effective yet minimally toxic cytoreduction of endogenous hematopoietic stem cells (HSCs) prior to transplantation of gene-modified HSCs. We studied the efficacy of administering a novel sequential treatment of parenteral ACK2, an antibody that blocks KIT, followed by low-dose irradiation (LD-IR) for conditioning of wild-type and X-linked chronic granulomatous disease (X-CGD) mice. In wild-type mice, combining ACK2 and LD-IR profoundly decreased endogenous competitive long-term HSC repopulating activity, and permitted efficient and durable donor-derived HSC engraftment after congenic transplantation. ACK2 alone was ineffective. The combination of ACK2 and LD-IR was also effective conditioning in X-CGD mice for engraftment of X-CGD donor HSCs transduced ex vivo with a lentiviral vector. We conclude that combining ACK2 with LD-IR is a promising approach to effectively deplete endogenous HSCs and facilitate engraftment of transplanted donor HSCs.


2018 ◽  
Author(s):  
Michael Luzuriaga ◽  
Raymond P. Welch ◽  
Madushani Dharmawardana ◽  
Candace Benjamin ◽  
Shaobo Li ◽  
...  

<div><div><div><p>Vaccines have an innate tendency to lose their structural conformation upon environmental and chemical stressors. A loss in conformation reduces the therapeutic ability to prevent the spread of a pathogen. Herein, we report an in-depth study of zeolitic imidazolate framework-8 (ZIF-8) and its ability to provide protection for a model viral vector against dena- turing conditions. The immunoassay and spectroscopy analysis together demonstrate enhanced thermal and chemical stability to the conformational structure of the encapsulated viral nanoparticle. The long-term biological activity of this virus-ZIF composite was investigated in animal models to further elucidate the integrity of the encapsulated virus, the bio-safety, and immunogenicity of the overall composite. Additionally, histological analysis found no observable tissue damage in the skin or vital organs in mice, following multiple subcutaneous administrations. This study shows that ZIF-based protein composites are strong candidates for improved preservation of proteinaceous drugs, are biocompatible, and capable of controlling the release and adsorption of drugs in vivo.</p></div></div></div>


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Maria Mensch ◽  
Jade Dunot ◽  
Sandy M. Yishan ◽  
Samuel S. Harris ◽  
Aline Blistein ◽  
...  

Abstract Background Amyloid precursor protein (APP) processing is central to Alzheimer’s disease (AD) etiology. As early cognitive alterations in AD are strongly correlated to abnormal information processing due to increasing synaptic impairment, it is crucial to characterize how peptides generated through APP cleavage modulate synapse function. We previously described a novel APP processing pathway producing η-secretase-derived peptides (Aη) and revealed that Aη–α, the longest form of Aη produced by η-secretase and α-secretase cleavage, impaired hippocampal long-term potentiation (LTP) ex vivo and neuronal activity in vivo. Methods With the intention of going beyond this initial observation, we performed a comprehensive analysis to further characterize the effects of both Aη-α and the shorter Aη-β peptide on hippocampus function using ex vivo field electrophysiology, in vivo multiphoton calcium imaging, and in vivo electrophysiology. Results We demonstrate that both synthetic peptides acutely impair LTP at low nanomolar concentrations ex vivo and reveal the N-terminus to be a primary site of activity. We further show that Aη-β, like Aη–α, inhibits neuronal activity in vivo and provide confirmation of LTP impairment by Aη–α in vivo. Conclusions These results provide novel insights into the functional role of the recently discovered η-secretase-derived products and suggest that Aη peptides represent important, pathophysiologically relevant, modulators of hippocampal network activity, with profound implications for APP-targeting therapeutic strategies in AD.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3678
Author(s):  
Vera Chernonosova ◽  
Alexandr Gostev ◽  
Ivan Murashov ◽  
Boris Chelobanov ◽  
Andrey Karpenko ◽  
...  

We examined the physicochemical properties and the biocompatibility and hemocompatibility of electrospun 3D matrices produced using polyurethane Pellethane 2363-80A (Pel-80A) blends Pel-80A with gelatin or/and bivalirudin. Two layers of vascular grafts of 1.8 mm in diameter were manufactured and studied for hemocompatibility ex vivo and functioning in the infrarenal position of Wistar rat abdominal aorta in vivo (n = 18). Expanded polytetrafluoroethylene (ePTFE) vascular grafts of similar diameter were implanted as a control (n = 18). Scaffolds produced from Pel-80A with Gel showed high stiffness with a long proportional limit and limited influence of wetting on mechanical characteristics. The electrospun matrices with gelatin have moderate capacity to support cell adhesion and proliferation (~30–47%), whereas vascular grafts with bivalirudin in the inner layer have good hemocompatibility ex vivo. The introduction of bivalirudin into grafts inhibited platelet adhesion and does not lead to a change hemolysis and D-dimers concentration. Study in vivo indicates the advantages of Pel-80A grafts over ePTFE in terms of graft occlusion, calcification level, and blood velocity after 6 months of implantation. The thickness of neointima in Pel-80A–based grafts stabilizes after three months (41.84 ± 20.21 µm) and does not increase until six months, demonstrating potential for long-term functioning without stenosis and as a suitable candidate for subsequent preclinical studies in large animals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyle S. Feldman ◽  
Eunwon Kim ◽  
Michael J. Czachowski ◽  
Yijen Wu ◽  
Cecilia W. Lo ◽  
...  

AbstractRespiratory mucociliary clearance (MCC) is a key defense mechanism that functions to entrap and transport inhaled pollutants, particulates, and pathogens away from the lungs. Previous work has identified a number of anesthetics to have cilia depressive effects in vitro. Wild-type C57BL/6 J mice received intra-tracheal installation of 99mTc-Sulfur colloid, and were imaged using a dual-modality SPECT/CT system at 0 and 6 h to measure baseline MCC (n = 8). Mice were challenged for one hour with inhalational 1.5% isoflurane, or intraperitoneal ketamine (100 mg/kg)/xylazine (20 mg/kg), ketamine (0.5 mg/kg)/dexmedetomidine (50 mg/kg), fentanyl (0.2 mg/kg)/1.5% isoflurane, propofol (120 mg/Kg), or fentanyl/midazolam/dexmedetomidine (0.025 mg/kg/2.5 mg/kg/0.25 mg/kg) prior to MCC assessment. The baseline MCC was 6.4%, and was significantly reduced to 3.7% (p = 0.04) and 3.0% (p = 0.01) by ketamine/xylazine and ketamine/dexmedetomidine challenge respectively. Importantly, combinations of drugs containing fentanyl, and propofol in isolation did not significantly depress MCC. Although no change in cilia length or percent ciliation was expected, we tried to correlate ex-vivo tracheal cilia ciliary beat frequency and cilia-generated flow velocities with MCC and found no correlation. Our results indicate that anesthetics containing ketamine (ketamine/xylazine and ketamine/dexmedetomidine) significantly depress MCC, while combinations containing fentanyl (fentanyl/isoflurane, fentanyl/midazolam/dexmedetomidine) and propofol do not. Our method for assessing MCC is reproducible and has utility for studying the effects of other drug combinations.


2019 ◽  
Vol 116 (50) ◽  
pp. 25322-25328 ◽  
Author(s):  
Yi Liu ◽  
Xiaopin Ma ◽  
Hisashi Fujioka ◽  
Jun Liu ◽  
Shengdi Chen ◽  
...  

Loss-of-function mutations in DJ-1 are associated with autosomal recessive early onset Parkinson’s disease (PD), yet the underlying pathogenic mechanism remains elusive. Here we demonstrate that DJ-1 localized to the mitochondria-associated membrane (MAM) both in vitro and in vivo. In fact, DJ-1 physically interacts with and is an essential component of the IP3R3-Grp75-VDAC1 complexes at MAM. Loss of DJ-1 disrupted the IP3R3-Grp75-VDAC1 complex and led to reduced endoplasmic reticulum (ER)-mitochondria association and disturbed function of MAM and mitochondria in vitro. These deficits could be rescued by wild-type DJ-1 but not by the familial PD-associated L166P mutant which had demonstrated reduced interaction with IP3R3-Grp75. Furthermore, DJ-1 ablation disturbed calcium efflux-induced IP3R3 degradation after carbachol treatment and caused IP3R3 accumulation at the MAM in vitro. Importantly, similar deficits in IP3R3-Grp75-VDAC1 complexes and MAM were found in the brain of DJ-1 knockout mice in vivo. The DJ-1 level was reduced in the substantia nigra of sporadic PD patients, which was associated with reduced IP3R3-DJ-1 interaction and ER-mitochondria association. Together, these findings offer insights into the cellular mechanism in the involvement of DJ-1 in the regulation of the integrity and calcium cross-talk between ER and mitochondria and suggests that impaired ER-mitochondria association could contribute to the pathogenesis of PD.


Sign in / Sign up

Export Citation Format

Share Document