Irᴵᴵᴵ as a Strategy for Preorganization in H-Bonded Motifs

Author(s):  
Barbora Balonova ◽  
Helena J. Shepherd ◽  
Christopher Serpell ◽  
Barry Blight

Here we present the synthesis and characterisation of four hydrogen bonded systems based on thiourea derivatives. These motifs are considered to be stable and desirable for supramolecular hydrogen-bonded functional materials. Interpretation of the structural design of thiourea based ligand and its incorporation into metal complexes can contribute to the understanding of preorganised self-assembly and open new pathways in design of novel soft materials. This work contributes to the unexplored library of hydrogen bonded metal complexes based on iridium. Further we examined the photoluminescence of the system of general formula [Ir(C^N)<sub>2</sub>(N^S)] and the effect of hydrogen bonding on the emission properties when combined with different <i>n</i>-heteroacenes.

2019 ◽  
Author(s):  
Barbora Balonova ◽  
Helena J. Shepherd ◽  
Christopher Serpell ◽  
Barry Blight

Here we present the synthesis and characterisation of four hydrogen bonded systems based on thiourea derivatives. These motifs are considered to be stable and desirable for supramolecular hydrogen-bonded functional materials. Interpretation of the structural design of thiourea based ligand and its incorporation into metal complexes can contribute to the understanding of preorganised self-assembly and open new pathways in design of novel soft materials. This work contributes to the unexplored library of hydrogen bonded metal complexes based on iridium. Further we examined the photoluminescence of the system of general formula [Ir(C^N)<sub>2</sub>(N^S)] and the effect of hydrogen bonding on the emission properties when combined with different <i>n</i>-heteroacenes.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuaiyuan Han ◽  
Sandrine Pensec ◽  
Dijwar Yilmaz ◽  
Cédric Lorthioir ◽  
Jacques Jestin ◽  
...  

Abstract Janus cylinders are one-dimensional colloids that have two faces with different compositions and functionalities, and are useful as building blocks for advanced functional materials. Such anisotropic objects are difficult to prepare with nanometric dimensions. Here we describe a robust and versatile strategy to form micrometer long Janus nanorods with diameters in the 10-nanometer range, by self-assembly in water of end-functionalized polymers. The Janus topology is not a result of the phase segregation of incompatible polymer arms, but is driven by the interactions between unsymmetrical and complementary hydrogen bonded stickers. Therefore, even compatible polymers can be used to form these Janus objects. In fact, any polymers should qualify, as long as they do not prevent co-assembly of the stickers. To illustrate their applicative potential, we show that these Janus nanorods can efficiently stabilize oil-in-water emulsions.


2009 ◽  
Vol 08 (04) ◽  
pp. 691-711 ◽  
Author(s):  
FENG FENG ◽  
HUAN WANG ◽  
WEI-HAI FANG ◽  
JIAN-GUO YU

A modified semiempirical model named RM1BH, which is based on RM1 parameterizations, is proposed to simulate varied biological hydrogen-bonded systems. The RM1BH is formulated by adding Gaussian functions to the core–core repulsion items in original RM1 formula to reproduce the binding energies of hydrogen bonding of experimental and high-level computational results. In the parameterizations of our new model, 35 base-pair dimers, 18 amino acid residue dimers, 14 dimers between a base and an amino acid residue, and 20 other multimers were included. The results performed with RM1BH were compared with experimental values and the benchmark density-functional (B3LYP/6-31G**/BSSE) and Möller–Plesset perturbation (MP2/6-31G**/BSSE) calculations on various biological hydrogen-bonded systems. It was demonstrated that RM1BH model outperforms the PM3 and RM1 models in the calculations of the binding energies of biological hydrogen-bonded systems by very close agreement with the values of both high-level calculations and experiments. These results provide insight into the ideas, methods, and views of semiempirical modifications to investigate the weak interactions of biological systems.


2020 ◽  
Author(s):  
Shuaiyuan Han ◽  
Sandrine Pensec ◽  
Cédric Lorthioir ◽  
Jacques Jestin ◽  
Jean-Michel Guigner ◽  
...  

Janus cylinders are one-dimensional colloids that have two faces with different compositions and functionalities and are useful as building blocks for advanced functional materials. Such anisotropic objects are difficult to prepare with nanometric dimensions. Here we describe a robust and versatile strategy to form micrometer long Janus nanorods with diameters in the 10-nanometer range, by self-assembly in water of end-functionalized polymers. For the first time, the Janus topology is not a result of the phase segregation of incompatible polymer arms, but is driven by the interactions between unsymmetrical and complementary hydrogen bonded stickers. It is therefore independent of the actual polymers used and works even for compatible polymers. To illustrate their applicative potential, we show that these Janus nanorods can efficiently stabilize oil-in-water emulsions.


1976 ◽  
Vol 54 (4) ◽  
pp. 642-646 ◽  
Author(s):  
R. S. Brown

The photoelectron spectra of cis- and trans-2-aminocyclopentanol and cis- and trans-2-(N,N,-dimethylamino)cyclopentanol have been recorded and interpreted. The cis isomers exhibit N lone pair ionizations at higher ionization energy, and O lone pair ionizations at lower ionization energy than their trans isomers.The results are most consistent with the existence and observation of intramolecular hydrogen-bonding in the cis isomers. Infrared data on these systems also show that the cis isomers exist in the intramolecularly hydrogen-bonded state.


2020 ◽  
Vol 02 (01) ◽  
pp. 047-063 ◽  
Author(s):  
Nelson Ricardo Ávila-Rovelo ◽  
Amparo Ruiz-Carretero

Supramolecular approaches are of great interest in the design of functional materials. The types of aggregates arising from different noncovalent interactions endow materials with intriguing properties. In this sense, J-type aggregates are very attractive due to their unique optical properties and capacity to transport excitons. These features make them great candidates in the design of materials for organic electronic devices. Furthermore, the incorporation of additional hydrogen-bonding functionalities provides J-aggregates with superior directionality and connection among the different π-conjugated cores. The control over the formation of H-bonds to achieve functional aggregates is therefore a promising strategy towards controlled structures with specific functions.This review outlines the most relevant and recent works of π-conjugated systems exhibiting J-type aggregates resulting from hydrogen-bonding interactions. Different types of hydrogen-bonding functionalities will be discussed together with their roles in the aggregate properties, their impact in the optoelectronic properties, the self-assembly mechanisms, and their applications in organic electronics.


2006 ◽  
Vol 9 (12) ◽  
pp. 1251-1254 ◽  
Author(s):  
Nilotpal Barooah ◽  
Anirban Karmakar ◽  
Rupam J. Sarma ◽  
Jubaraj B. Baruah

2021 ◽  
Author(s):  
Eleanor Raphael ◽  
Matthew J Derry ◽  
Michael Hippler ◽  
Steven P Armes

Polymerization-induced self-assembly (PISA) is exploited to design hydrogen-bonded poly(stearyl methacrylate)-poly(benzyl methacrylate) [PSMA-PBzMA] worm gels in n-dodecane. Using a carboxylic acid-based RAFT agent facilitates hydrogen bonding between neighboring worms to produce...


Sign in / Sign up

Export Citation Format

Share Document